• 제목/요약/키워드: Balance Cylinder

검색결과 72건 처리시간 0.019초

DADS를 이용한 밸런스 샤프트 장착 직렬 3기통 엔진의 진동 해석 (Vibration Analysis of In-line Three Cylinder Engine with Balance Shaft Using DADS)

  • 서권희;민한기;천인범
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.148-156
    • /
    • 2000
  • For the in-line three cylinder engine whose crankshaft has a phase of 120 degrees, the total sum of unbalanced inertia forces occurring in each cylinder will be counterbalanced among three cylinders. However, parts of inertia forces generated at the No.1 and No.3 cylinders will cause a primary moment about the No.2 cylinder. In order to eliminate this out-of-balance moment, a single balance shaft has been attached to the cylinder block so that the engine durability and riding comfort may be further improved. Accordingly, the forced vibration analysis of the in-line three cylinder engine must be implemented to meet the required targets at an early design stage. In this paper, a method to reduce noise and vibration in the 800cc, in-line three cylinder LPG engine is suggested using the multibody dynamic simulation. The static and dynamic balances of the in-line three cylinder engine are investigated analytically. The multibody dynamic model of the in-line three cylinder engine is developed where the inertia properties of connecting rod, crankshaft, and balance shaft are extracted from their FE-models. The combustion pressure within the No.1 cylinder in three significant operating conditions(1500rpm-full load, 4000rpm-full load and 7000rpm-no load)is measured from the actual tests to excite the engine. The vibration velocities at three engine mounts with and without balance shaft are evaluated through the forced vibration analysis. Obviously, it is shown that the vibration of the in-line three cylinder engine with balance shaft is reduced to the acceptable level .

  • PDF

밸런스 샤프트 설계를 위한 최적화 설계기법 연구 (Optimal Design Strategy on Balance Shaft)

  • 김찬중;배철용;이봉현;권성진;나병철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.314-319
    • /
    • 2006
  • Main focus on balance shaft module is to reduce the vibration triggered from engine block and compensate it from unbalance mass in balance shaft. Since the performance of balance shaft module is controlled by rotor shape including unbalance mass, a design strategy on rotor is key issue on determine the quality of balance shaft system. Even the design result on balance shaft mostly affect the lay-out of housing and other related components, its issue on balance shaft should be considered in advance throughout the total design procedure. In this paper, optimal design strategy focused on balance shaft is presented to make a design process efficiently with ensuring its high performance. And its method is verified with field design process of balance shaft in commonly adapted vehicle with 3-cylinder and 4-cylinder engine.

  • PDF

유압 액셜 피스톤 펌프에서 실린더 블록과 구면 밸브 플레이트 사이의 마찰 특성 (Friction Characteristics between the Cylinder Block and the Spherical Valve Plate in Hydraulic Axial Piston Pump)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.23-28
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, it is need to know the various characteristics in the sliding contact parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump in experimentally. Results are arranged as follow; (1) friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio in valve plate. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

액셜 피스톤 펌프에서 실린더 블록과 밸브 플레이트 사이의 마찰 특성 (Friction characteristics between the cylinder block and the valve plate in axial piston pump)

  • 김종기;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.249-255
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, we have to know the various characteristics in the sliding parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump by using of modeling experiment. The main results of this study are these; (1) Friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

  • PDF

CFD를 이용한 풍동 시험 모델 지지대의 공력 특성 해석 (CFD Analysis of External Balance Strut Supporting Wind Tunnel Model)

  • 김철완;박영민;이장연
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.102-105
    • /
    • 2003
  • The effect of the external balance strut on the wind tunnel model is investigated with simplified geometries. For this study, flat plate and elliptic wing are simulated with and without a cylinder. Pressure and wall shear stress distribution are analyzed to understand the effect of the cylinder.

  • PDF

양방향펌프와 편로드실린더에 의한 리프터의 구동에 관한 연구 (Study for the Actuation of Lifter by the Bi-Directional Pump and Single-Rod Cylinder)

  • 이성래;김제민
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.139-145
    • /
    • 2007
  • The motion of single-rod cylinder is typically controlled by the directional control valve. In some case, the hydraulic system should be energized by the man power and at the same time the motion of a cylinder is controlled manually. It may be confusing for a man to do two things at the same time. The solution is to make up the closed hydraulic circuit with the bi-directional pump and single-rod cylinder without using a directional control valve. In the case of single-rod cylinder, the flows at the rod side and head side are so different that several valves should be installed to make the motion of single-rod cylinder possible. The hydraulic system is composed of a bi-directional pump, a single-rod cylinder, pilot operated check valves, a check valve and a counter balance valve for the purpose of actuating the lifter. The characteristics of a suggested system are analysized mathematically and numerically.

카운터밸런스밸브와 차동실린더회로를 포함한 호이스트 유압장치의 최적설계 (Optimal Design of the Hoist Hydraulic System Including the Counter Balance Valve and Differential Cylinder Circuit)

  • 이성래
    • 유공압시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2008
  • The typical hydraulic system of hoist is composed of a hydraulic supply unit, a directional control valve, counter balance valve, and flow control valves. The flow capacity coefficients of flow control valves should be adjusted so that the hoist is operated at moderate speed and the hydraulic energy loss is minimized. However, it is difficult to adjust the flow coefficients of flow control valves by trial and error for optimal operation. Here, the steady state model of the hoist hydraulic system including the differential cylinder circuit is derived and the optimal flow capacity coefficients of flow control valves are obtained using the complex method that is one kind of constrained direct search method.

  • PDF

밸런스샤프트의 회전체역학 해석 (Rotordynamic Analysis of Balance Shafts)

  • 노종원;신범식;박흥준;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.531-536
    • /
    • 2006
  • In four cylinder engine, the second order inertia force occurs due to the reciprocating parts of the cylinder. Because the magnitude of the inertia force is proportional to a square of the angular velocity of crank shaft, engine gets suffered from vibration excited by unbalanced inertia force in high speed. This vibration excited by the unbalanced inertia force can be canceled by applying a balance shaft. Balance shaft has one or more unbalance mass and rotates twice quickly than the crank shaft. In this paper, an unbalanced force caused by the rotating of unbalance mass of balance shafts was calculated. The directional equivalent stiffness and damping coefficients of the journal bearing of balance shafts was calculated. Equations of rotational vibration modes were derived using directional stiffness and damping coefficients. The dynamic stability of balance shafts was analyzed and evaluated for two type models using the equivalent stiffness and damping coefficients. An efficient procedure to he able to evaluate dynamic stability and design optimal balance shaft was proposed.

  • PDF

틸팅 메커니즘 기구학적 성능평가를 위한 유압 실린더 설계 (Design of Hydraulic cylinder for Kinetic Performance Test of Tilting Mechanism)

  • 김호연;남진욱;이준환;김봉택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1124-1127
    • /
    • 2011
  • In this paper, kinematic performance of the tilting mechanism, hydraulic cylinder was designed for the evaluation. ESW GmbH is attached to the existing electric tilting actuator's performance based on the similar system, each operated by tilting the balance in order to effectively balance has been designed by an independent hydraulic system. In addition, the behavior of the hydraulic system for storing and analyzing information about UI (User Interface) was also included in the design.

  • PDF

편로드 실린더 구동 EHA의 유압 회로 개선 (Improvement of a Hydraulic Circuit for an Electro-Hydrostatic Actuator Equipped with a Single Rod Cylinder)

  • 홍예선;김상석;김대현;김상범;박상준;최관호
    • 항공우주시스템공학회지
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2014
  • The conventional hydraulic circuits for electro-hydrostatic actuators equipped with a single-rod cylinder can oscillate under overrunning load conditions. In this paper the oscillation problem encountered in the conventional hydraulic circuits for EHAs is analyzed and it is shown by simulation results that this problem can be solved by employing a counter balance valve instead of a pilot-operated check valve generally used in the conventional hydraulic circuits.