• Title/Summary/Keyword: Bainite structure

Search Result 33, Processing Time 0.022 seconds

Prediction of Jominy Hardness Curves Using Multiple Regression Analysis, and Effect of Alloying Elements on the Hardenability (다중 회귀 분석을 이용한 보론강의 조미니 경도 곡선 예측 및 합금 원소가 경화능에 미치는 영향)

  • Wi, Dong-Yeol;Kim, Kyu-Sik;Jung, Byoung-In;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.781-789
    • /
    • 2019
  • The prediction of Jominy hardness curves and the effect of alloying elements on the hardenability of boron steels (19 different steels) are investigated using multiple regression analysis. To evaluate the hardenability of boron steels, Jominy end quenching tests are performed. Regardless of the alloy type, lath martensite structure is observed at the quenching end, and ferrite and pearlite structures are detected in the core. Some bainite microstructure also appears in areas where hardness is sharply reduced. Through multiple regression analysis method, the average multiplying factor (regression coefficient) for each alloying element is derived. As a result, B is found to be 6308.6, C is 71.5, Si is 59.4, Mn is 25.5, Ti is 13.8, and Cr is 24.5. The valid concentration ranges of the main alloying elements are 19 ppm < B < 28 ppm, 0.17 < C < 0.27 wt%, 0.19 < Si < 0.30 wt%, 0.75 < Mn < 1.15 wt%, 0.15 < Cr < 0.82 wt%, and 3 < N < 7 ppm. It is possible to predict changes of hardenability and hardness curves based on the above method. In the validation results of the multiple regression analysis, it is confirmed that the measured hardness values are within the error range of the predicted curves, regardless of alloy type.

Development of the high elonagation and high strength steel sheets utilizing two step heat treatment (2단열처리를 이용한 고연신율 고장력 강판의 개발)

  • Kim, Y.H.;Kim, Y.H.;Kim, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 1997
  • The variation of the mechanical properties and the formation of retained austenite with heat treatment conditions in austempered Si bearing carbon steels has been investigated. In the case of a steel containing 0.35C-1.48Si-0.95Mn, it has been found that a feather shape bainite structure of lath are obtained under a isothermal treated condition at just below the Ms temperature, and the martensite, bainitic ferrite and retained austenite of second phase particles on the ferrite matrix for a isothermal treated steels after intercritical annealing are precipitated in a linked shape. The retained austenite with $2{\mu}m$ size induced as TRIP is found to increase with increasing the formation rate of retained austenite for the intercritical annealing and high Si containing steels. The tensile strength is increased as austempering temperature increases in all isothermal treatment temperature, whereas the elongation is shown to roughly decrease as the tensile strength increases. The values of tensile strength-elongation balance have showed a marked dependence upon the elongation rather than the tensile stregth, and their values are increased for high Si containing steels and intercritical annealing condition. The most optimum result has been shown to be the tensile stregth-elongation balance of $2882.4kgf/mm^2.%$ and the elongation of 33.3% for a "B" steel in the heat treating temperature range of $780{\sim}370^{\circ}C$.

  • PDF

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.