• 제목/요약/키워드: Bainite structure

Search Result 33, Processing Time 0.022 seconds

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF

The Characteristics of Mechanical Properties and Fatigue Crack Propagation of Fire Resistance Steel for Frame Structure (구조용 내화강의 기계적 성질과 피로균열전파 특성에 관한 연구)

  • Kim, Hyeon-Su;Nam, Gi-U;Gang, Chang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • This study is to investigate the mechanical properties and the fatigue crack propagation of fire resistance steel for frame structure as the chemical composition was changed by addition of N, B and rolled end temperature was varied. We used two kinds of specimen, the one is parallel and the other is perpendicular to the rolling directions. As rolled end temperature increased, volume fraction of ferrite and pearlite decreased, but volume fraction of baintie and grain size increased. Micro-hardness decreased as rolled end temperature increased, but tensile and yield strength increased. Volume fraction of ferrite and pearlite decreased by addition of N. But volume fraction of bainite, tensile and yield strength increased. Microstructure was changed to martensite by addition of B, and tensile and yield strength increased. Fatigue life of TL direction specimen was shorter than that of LT direction specimen. There was no significant effect to fatigue crack propagation rate by addition of N and changing rolling condition, but fatigue life was increased by addition of B.

The Effect of Isothermal Annealing on Microstructure of Forged Parts (단조품의 등온 어닐링에 따른 미세조직 변화)

  • Kim, D.B.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

Effects of V Addition on Tensile and Impact Properties in Low Carbon 1.1Mn Steels (저탄소 1.1 Mn 강의 인장 및 충격 성질에 미치는 V첨가의 영향)

  • Yang, H.R.;Cho, K.S.;Choi, J.H.;Sim, H.S.;Lee, K.B.;Kwon, H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.281-286
    • /
    • 2008
  • In the 1.1 Mn steel containing boron, effects of the 0.1 V addition and processing condition were studied. In the $550^{\circ}C$ interrupted cooling where the main structure is (ferrite + pearlite), the impact toughness decreased as the tensile strength increased by the 0.1 V addition. The $800^{\circ}C$ rolling including two step rolling of $800-770^{\circ}C$, exhibited better strength-toughness balance, as compared to the $770^{\circ}C$ rolling. This seems to be kind of conditioning effect at higher temperature, e.g., more uniform deformation effect. In the accelerated cooling after the $750^{\circ}C$ rolling in a dual phase range, the impact toughness was enhanced, despite a large increase in tensile strength. This is believed to be related to the change of main structure from (ferrite + pearlite) to (ferrite + bainite).

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

Effect of Fully and Semi Austempering Treament on the Fatigue Properties of Ductile Cast Iron (완전 및 부분 오스템퍼링 처리가 구상흑연주철의 피로특성에 미치는 영향)

  • Lim Bok-kyu;Hwang Jung-gak;Kim Dong-Youl;Kim Min-gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.462-469
    • /
    • 2005
  • Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from ${\alpha}+{\gamma}$ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from ${\gamma}$). In spite of semi austempered ductile iron shows the $86{\%}$ increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation(ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons.

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

Effect of Two Step Austenitizing Treatment Conditions on the Microstructural Characteristics of ADI (ADI의 조직특성에 미치는 2단 오스테나이트화 처리조건의 영향)

  • Choi, S.L.;Yun, K.H.;Moon, W.J.;Kang, C.Y.;Kim, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • The variation of the mechanical properties, microstructures and the formation of retained austenite with heat treatment conditions in austempered ductile cast iron has been investigated. In the case of austempered ductile cast iron below 25mm diameter, it has been found that a pearlite structure are not obtained under a super cooled condition at range of $0.05^{\circ}C/sec{\sim}10^{\circ}C/sec$, and the matrix is precipitated in graphite, bainite and retained austenite. After austempering treatment the retained austenite is increased with decreasing cooling rate. The elongation increases with decreasing super cooling rate, and the optimum result has been shown to be the elongation of 15.6% at super cooling rate of $0.05^{\circ}C/sec$. The optimum result has been shown to be the tensile strength-elongation balance of $1656kgf/mm^2.%$ and it is more than doubled to as the casting state and continuous cooling condition.

  • PDF

Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding (선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.