• Title/Summary/Keyword: Bag of Visual Words model (BoVW)

Search Result 4, Processing Time 0.023 seconds

Image Classification Using Bag of Visual Words and Visual Saliency Model (이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류)

  • Jang, Hyunwoong;Cho, Soosun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.547-552
    • /
    • 2014
  • As social multimedia sites are getting popular such as Flickr and Facebook, the amount of image information has been increasing very fast. So there have been many studies for accurate social image retrieval. Some of them were web image classification using semantic relations of image tags and BoVW(Bag of Visual Words). In this paper, we propose a method to detect salient region in images using GBVS(Graph Based Visual Saliency) model which can eliminate less important region like a background. First, We construct BoVW based on SIFT algorithm from the database of the preliminary retrieved images with semantically related tags. Second, detect salient region in test images using GBVS model. The result of image classification showed higher accuracy than the previous research. Therefore we expect that our method can classify a variety of images more accurately.

A Salient Based Bag of Visual Word Model (SBBoVW): Improvements toward Difficult Object Recognition and Object Location in Image Retrieval

  • Mansourian, Leila;Abdullah, Muhamad Taufik;Abdullah, Lilli Nurliyana;Azman, Azreen;Mustaffa, Mas Rina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.769-786
    • /
    • 2016
  • Object recognition and object location have always drawn much interest. Also, recently various computational models have been designed. One of the big issues in this domain is the lack of an appropriate model for extracting important part of the picture and estimating the object place in the same environments that caused low accuracy. To solve this problem, a new Salient Based Bag of Visual Word (SBBoVW) model for object recognition and object location estimation is presented. Contributions lied in the present study are two-fold. One is to introduce a new approach, which is a Salient Based Bag of Visual Word model (SBBoVW) to recognize difficult objects that have had low accuracy in previous methods. This method integrates SIFT features of the original and salient parts of pictures and fuses them together to generate better codebooks using bag of visual word method. The second contribution is to introduce a new algorithm for finding object place based on the salient map automatically. The performance evaluation on several data sets proves that the new approach outperforms other state-of-the-arts.

Bag of Visual Words Method based on PLSA and Chi-Square Model for Object Category

  • Zhao, Yongwei;Peng, Tianqiang;Li, Bicheng;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2633-2648
    • /
    • 2015
  • The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.

Recognizing Actions from Different Views by Topic Transfer

  • Liu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2093-2108
    • /
    • 2017
  • In this paper, we describe a novel method for recognizing human actions from different views via view knowledge transfer. Our approach is characterized by two aspects: 1) We propose a unsupervised topic transfer model (TTM) to model two view-dependent vocabularies, where the original bag of visual words (BoVW) representation can be transferred into a bag of topics (BoT) representation. The higher-level BoT features, which can be shared across views, can connect action models for different views. 2) Our features make it possible to obtain a discriminative model of action under one view and categorize actions in another view. We tested our approach on the IXMAS data set, and the results are promising, given such a simple approach. In addition, we also demonstrate a supervised topic transfer model (STTM), which can combine transfer feature learning and discriminative classifier learning into one framework.