• Title/Summary/Keyword: Bacterioneuston

Search Result 2, Processing Time 0.02 seconds

Effect of Copper and Cadmium on Natural Populations of Bacteria from Surface Microlayers (중금속이 해양의 표층세균군집에 미치는 영향에 관하여)

  • 김상종
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.243-247
    • /
    • 1984
  • The effect of the heavy metals copper and cadmium on the natural populations of surface microlayer and subsurface water was investigated. Two microbiological parameters, number of colony-forming bacteria and $^{14}C-glucose$ uptake rate, were evalated. The two natural bacterial populations showed different tolerances of the heavy metals. The ingibition of bacterial growth and activity occurred more strongly in the 1m-depth samples than in neuston populations. The results support the existence of autochthonous bacterioneuston populations in marine environment.

  • PDF

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.