• Title/Summary/Keyword: Bacteriochlorophyll a

Search Result 21, Processing Time 0.026 seconds

Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides

  • Kim, Nam Young;Yim, Tae Bin;Lee, Hyeon Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1589-1598
    • /
    • 2015
  • In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophyll-a-induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

Detection of Bacteriochlorophyll-c Containing Species of Green Sulfur Photosynthetic Bacterium Chlorobium vibrioforme

  • Yoshitaka Saga;oka, Hirozo-Oh;Hitoshi Tamiaki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.341-343
    • /
    • 2002
  • Bacteriochlorophyll(BChl)-c containing species of green sulfur photosynthetic bacterium Chlorobium (ChI.) vibrioforme, which has BChl-d mainly, was detected. We obtained colonies on agar plates by spreading the liquid culture of ChI. vibrioforme f. sp. thiosulfatophilum strain NCIB 8327 which contained the high ratio of BChl-c/BChl-d, and transferred each colony into a new liquid medium. These cultures after growing were found to be classified into two categories. One possessed BChl-d as a light-harvesting pigment and the other did BChl-c. No colonies examined here contained both BChls-d and c. Therefore, the presence of both BChls-d and c in our cultures of ChI. vibrioforme was ascribed to the coexistence of two different cells which had BChl-d and c as the chlorosomal pigment, respectively. The change of pigment composition observed in our liquid cultures can be thus explained by the difference of growth rates between two kinds of cells.

  • PDF

Isolation and Structural Determination of a Complete Set of Intact Bacteriochlorophyll-d Homologs and Isomers from Green Sulfur Bacterium Chlorobium vibrioforme and Their Aggregation Properties in Hydrophobic Solvents

  • Mizoguchi, Tadashi;Saga, Yoshitaka;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.344-346
    • /
    • 2002
  • Eight intact bacteriochlorophyll (BChl)-d homologs and isomers were isolated from a strain of green sulfur bacterium Chlorobium vibrioforme. All the molecular structures of the BChl-d components were fully determined by a combination of mass spectrometry and $^1$H-NMR spectroscopy. The aggregation behavior of the isomerically pure BChls-d in hydrophobic organic solvents was examined with respect to the stereoisomeric configuration at the C3$^1$ position as well as the bulkiness of the C8 and C12 side-chains by using electronic- absorption spectroscopy.

  • PDF

Characterization of Photosynthetic Bacteria in Swine Wastewater (양돈 계수에서 광합성 미생물의 특성)

  • 최경민;양재경
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.28-33
    • /
    • 2001
  • Photosynthetic bacteria (PSB), strains IP-4 and IP-6-7 were isolated from nature, and were studied for swine wastewater treatment. It was confirmed that these PSB were very effective for the COD treatment. Growth of those PSB were increased to 4.5 fold in organic-acids (acetate, propionate and butyrate) added medium than cultivation in Lascelles basal medium and the amount of bacteriochlorophyll a were increased to 5 folds. The COD removal rate in swine wastewater using PSB, strains IP-4 and IP6-7 were obtained 91% and 85%, respectively.

  • PDF

Physicochemical Characterization of Chlorosome Isolated from Chlorobium limicola f. thiosulfatophilum NCIB 8327 (Chlorobium limicola f. thiosulfatophilum NCIB 8327에서 분리한 Chlorosomes의 물리화학적 특성)

  • Na, Jong-Uk;Yoon, Hwan;Kang, Sa-Ouk
    • Korean Journal of Microbiology
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 1993
  • Physicochemical characteristics of chlorosomes isolated from Chlorobium lirnicoh f.thiosulfirtc~pl~ilut~i NClB 8327 were analyzed by means of UV-Visible spectrophotometer and CD-spectrophotometer. The density of the isolated chlorosomes were estimated to be 1.05 (g/$cm^{3}$) by Percoll self gradient ultracentrifugation. Chlorosome consist of bacteriochlorophyll d and some chlorobactene, and little amounl of bacteriochlorophyll a. Chlorosome is stable from 0 to $80^{\circ}C$and alkaline solution (above pH 7.0). but unstable in illuminated condition. From these results. it is suggested that some proteins or lipids may be essential for the stabilization of chlorosomes in vivo.

  • PDF

Coordination Chemistry of Chlorophylls: Which Side of the Chlorin Macrocycle is Favored for the Ligand Coordination\ulcorner

  • Oba, Toru;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.362-363
    • /
    • 2002
  • Since chlorophyll a and bacteriochlorophyll a are asymmetric molecules, an external ligand can coordinate to the central Mg atom either from the chiorin macrocycle side where the C13$^2$-methoxycarbonyl moiety protrudes (denoting as the 'back' side) or frome the other side (the 'face' side). We investigated which side of the macrocycle is favored for the ligand coordination, by survey of the highly resolved crystal structures of various photosynthetic proteins and theoretical model calculations. It is found that chlorophyll a as well as bacteriochlorophyll a and b in the photosynthetic proteins mostly bind their ligands on the 'back' sides. This finding was confirmed by the theoretical calculations for methyl chlorophyllide a and methyl bacteriochlorophyllide a as models: the 'back' type ligand-(bacterio )chlorophyll complex was more stable than the 'face' type one. The calculations predicted influence of the Cl3$^2$-stereochemistry on the choice of the side of the ligand coordination, which is discussed in relation to the presence of the Cl3$^2$-epimer of chlorophyll a in photosystem I reaction center [I].

  • PDF

Self-Aggregation of Synthetic Magnesium Bacteriochlorins as a Photosynthetic Antenna Model

  • Kunieda, Michio;Mizoguchi, Tadashi;Tamiaki, Hitoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.353-355
    • /
    • 2002
  • We prepared 3-(1-hydroxyethyl)-bacteriopyrochlorophy11-a (3) possessing magnesium atom and phytyl ester from modification of natural bacteriochlorophyll(BChl)-a. A dichloromethane solution of (3$^1$R) and (3$^1$S)-3 was diluted with 100~1000 fold volume of cyclohexane to give new species absorbing near-infrared lights. The resulting Q, maximum of (3$^1$R)-3 was 860 nm and red-shifted by 2150 $cm^{-1}$ / from the monomeric. In the nonpolar organic solvent, epimeric (3$^1$S)-3 showed a 1ess red-shifted peak at 798 nm as well as a residual monomeric band. Such visible spectra indicated that 3 diastereose1ectively aggregated in cyclohexane to afford oligomers possessing a simi1ar supramolecular structure with chlorosomal aggregates of natural BChl-d, 7,8-dehydro-form of 3.

  • PDF

The Photoheterotrophic Growth of Bacteriochlorophyll Synthase-Deficient Mutant of Rhodobacter sphaeroides Is Restored by I44F Mutant Chlorophyll Synthase of Synechocystis sp. PCC 6803

  • Kim, Eui-Jin;Kim, Hyeonjun;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.959-966
    • /
    • 2016
  • Chlorophyll synthase (ChlG) and bacteriochlorophyll synthase (BchG) have a high degree of substrate specificity. The BchG mutant of Rhodobacter sphaeroides, BG1 strain, is photosynthetically incompetent. When BG1 harboring chlG of Synechocystis sp. PCC 6803 was cultured photoheterotrophically, colonies arose at a frequency of approximately 10-8. All the suppressor mutants were determined to have the same mutational change, ChlGI44F. The mutated enzyme ChlGI44F showed BchG activity. Remarkably, BchGF28I, which has the substitution of F at the corresponding 28th residue to I, showed ChlG activity. The Km values of ChlGI44F and BchGF28I for their original substrates, chlorophyllide (Chlide) a and bacteriochlorophyllide (Bchlide) a, respectively, were not affected by the mutations, but the Km values of ChlGI44F and BchGF28I for the new substrates Bchlide a and Chlide a, respectively, were more than 10-fold larger than those for their original substrates, suggesting the lower affinities for new substrates. Taken together, I44 and F28 are important for the substrate specificities of ChlG and BchG, respectively. The BchG activity of ChlGI44F and the ChlG activity of BchGF28I further suggest that ChlG and BchG are evolutionarily related enzymes.

A study of Swine Wastewater Treatment using Photosynthetic Bacteria (광합성 세균을 이용한 돈분 폐수 처리에 관한 연구)

  • Choi, Kyung-Min;Park, Eung-Roh;Ju, Hong-Shin;Yang, Jae-Kyung;Lee, Ki-Young;Lee, Sung-Taik;Lee, Mu-Choon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.11-17
    • /
    • 1996
  • Photosynthetic bacteria, strains KN 1-1, KN 2-1 and KN 2-3 were isolated from nature, and were studied for swine wastewater treatment. Growth of those photosynthetic bacteria were increased to 2~3 fold in organic-acid added medium(sodium acetate 1g, sodium propionate 1g and sodium butyrate 1g in Lascelles basal medium $1{\ell}$) than cultivation in Lascelles basal medium, and amount of bacteriochlorophyll a were increased to 1.5~2 fold. Chemical Oxygen Demand(COD) in swine wastewater using photosynthetic bacteria, strains KN 1-1, KN 2-1 and KN 2-3 were reduced 80%, 89% and 75%, respectively.

  • PDF

Role of OrfQ in Formation of Light-Harvesting Complex of Rhodobacter sphaeroides under Light-Limiting Photoheterotrophic Conditions

  • LIM, SOO-KYONG;IL HAN LEE;KUN-SOO KIM;JEONG KUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.604-612
    • /
    • 1999
  • A puc-deleted cell of Rhodobacter sphaeroides grows with a doubling time longer than 160 h under light-limiting photoheterotrophic (3 Watts [W]/㎡) conditions due to an absence of the peripheral light-harvesting B800-850 complex. A spontaneous fast-growing mutant, R. sphaeroides SK101, was isolated from the puc-deleted cells cultured photoheterotrophically at 3 W/㎡. This mutant grew with an approximately 40-h doubling time. The growth of the mutant, however, was indistinguishable from its parental strain during photoheterotrophic growth at 10 W/㎡ as well as during aerobic growth. The membrane of SK101 grown aerobically did not reveal the presence of any spectral complex, while the amounts of the B875 complex and photosynthetic pigments of SK101 grown anaerobiclly in the dark with dimethylsulfoxide (DMSO) were the same as those of the parental cell. These results indicate that the oxygen control of the photosynthetic complex formation remained unaltered in the mutant. The B875 complex of SK101 under light-limiting conditions was elevated by 20% to 30% compared with that of the parental cell, which reflected the parallel increase of the bacteriochlorophyll and carotenoid contents of the mutant. When the puc was restored in SK101, the B875 complex level remained unchanged, but that of the B800-850 complex increased. The mutated phenotype of SK101 was complemented with orfQ encoding a putative bacteriochlorophyll-mobilizing protein. Accordingly, it is proposed that the mutated OrfQ of SK101 should have an altered affinity towards the assembly factor specific to the most peripheral light-harvesting complex, which could be either the B875 or the B800-850 complex.

  • PDF