• Title/Summary/Keyword: Bacterial viability

Search Result 182, Processing Time 0.039 seconds

A comparative study of three different viability tests for chemically or thermally inactivated Escherichia coli

  • Park, Seon Yeong;Kim, Chang Gyun
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.282-287
    • /
    • 2018
  • Three different methods of bacterial viability monitoring were compared to detect chemically or thermally inactivated Escherichia coli. Direct colony enumeration, live/dead bacterial cell staining with a fluorescent dye, and the dehydrogenase activity assay were compared with respect to their ease of use and time required to perform the three different tests. The green (live cell)/red (dead cell) ratio obtained from the fluorescent bacterial cell staining approach showed a linear relationship with the colony forming units; the result obtained with dehydrogenase was similar to those. The sensitivity of the monitoring methods to detect bacterial deactivation varied with different disinfection conditions. After thermal treatment, the sensitivity of the staining approach was lower, while that of the dehydrogenase activity assay was the highest. After chemical treatment, the sensitivity of detection for both methods was similar.

Use of Ratiometric Probes with a Spectrofluorometer for Bacterial Viability Measurement

  • Cleach, Jerome;Watier, Denis;Le Fur, Bruno;Brauge, Thomas;Duflos, Guillaume;Grard, Thierry;Lencel, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1782-1790
    • /
    • 2018
  • Assessment of microorganism viability is useful in many industrial fields. A large number of methods associated with the use of fluorescent probes have been developed, including fluorimetry, fluorescence microscopy, and cytometry. In this study, a microvolume spectrofluorometer was used to measure the membrane potential variations of Escherichia coli. In order to estimate the sensitivity of the device, the membrane potential of E. coli was artificially disrupted using an ionophore agent: carbonyl cyanide 3-chlorophenylhydrazone. The membrane potential was evaluated using two ratiometric methods: a Rhodamine 123/4',6-diamidino-2-phenylindole combination and a JC-10 ratiometric probe. These methods were used to study the impact of freezing on E. coli, and were compared with the conventional enumeration method. The results showed that it was beneficial to use this compact, easy-to-use, and inexpensive spectrofluorometer to assess the viability of bacterial cells via their membrane potential.

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.

Effect of Trehalose on Bioluminescence and Viability of Freeze-Dried Bacterial Cells

  • PARK, JI-EUN;KYU-HO LEE;DEOKJIN JAHNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.349-353
    • /
    • 2002
  • Two recombinant bacteria containing luxAB showed an increased tolerance to stresses associated with lyophilization, when the cells were freeze-dried in the presence of trehalose. In the case of a recombinant, UV2, only $2.5\%$ of the original bioluminescence and $2.7\%$ of the cell viability were restored after 4 h of freeze-drying without trehalose, which implies that the cells were heavily damaged during the dehydration. To improve these losses, trehalose was added before freeze-drying using different modes. Trehalose increased the bioluminescence and the viability of freeze-dried UV2 under all conditions tested, and it was also observed that the addition of trehalose to the cultures (final concentration of 0.08 M) for 15 min before the freeze-drying resulted in the restoration of $45\%$ of the original bioluminescence and $50\%$ of the cell viability. Trehalose also showed a similar efficacy with the other luminescent recombinant, YH9. Therefore, it was tentatively concluded that trehalose played a role as a protective agent in the freeze-drying of bacterial cells.

Microencapsulation Technology for Enhancement of Bifidobacterium spp. Viability: A Review (비피도박테리아의 생존성 증진을 위한 캡슐화 기술)

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.143-151
    • /
    • 2017
  • The intestinal microbiota has been shown to have a vital role in various aspects of human health, and accumulating evidence has shown the beneficial effects of supplementation with bifidobacteria for the improvement of human health, ranging from protection against infection to various positive effects. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Microencapsulation of probiotic bacterial cells provides protection against adverse conditions during processing, storage, and gastrointestinal passage. In this paper, we review the current knowledge, future prospects, and challenges of microencapsulation of probiotic Bifidobacterium spp.

Long-Term Starvation Induces the Viable-but-Nonculturable Condition in Lactobacillus crispatus KLB46

  • Lee, Seok-Yong;Kim, Ju-Hyeon;Jang, Jeong-Eun;Kim, Seung-Cheol;Yun, Hyeon-Sik;So, Jae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.918-922
    • /
    • 2001
  • In a previous study, we have isolated a number of lactobacilli from Korean women, and one of them (KLB46) was identified as Lactobacillus crispatus by 16S rRNA gene sequencing. For the ecological treatment of bacterial vaginosis (BV) cell suspension of L. crispatus KLB46 was instillated into BV patients. L. crispatus KLB46 was found to persist for several days in cell suspension with no nutrients. In this study, in order to assess the influence of starvation on physiological activity, we compared the viability and culturability of KLB46 following suspension in various buffer solutions. A pair of in situ fluorescent dye was used to assess viability (i.e. membrane integrity) and the culturability was examined by plate count assay. A rapid epifluorescence staining method using the LIVE/DEAD Bacterial Viability Kit $(BacLight^{TM})$ was applied to estimate both viable and total counts of bacteria in cell suspension. $BacLight^{TM}$ is composed of two nucleic acid-binding stains ($SYTO\;9^{TM}$ and propidium iodide). $SYTO\;9^{TM}$ penetrates all bacterial membranes and stains the cells green while propidium iodide only penetrates cells with damaged membranes, therefore the combination of the two stains produces red fluorescing cells. Optimal staining conditions for $BacLight^{TM}$ were found to be with 0.0835M $SYTO\;9^{TM}$ and 0.05M propidium iodide for 15 min incubation at room temperature in dark. When cells were microscopically examined during 140 hours of starvation, the culturability decreased markedly while the viability remained relatively constant, which suggests that large fraction of KLB46 cells became viable but non-culturable (VBNC) upon starvation.

  • PDF

Effects of Different Concentrations of Escherichia coli and Days of Preservation on Boar Sperm Quality

  • Chung, Ki-Hwa;Kim, In-Cheul;Son, Jung-Ho
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • The objective of this study was to investigate the effect of bacterial contamination on elapsed time after preservation on boar semen. Known numbers of Escherichia coli (E. coli) were inoculated to freshly ejaculated semen and sperm parameters such as viability, motility, agglutination, acrosome integrity and hypo-osmotic swelling test were performed during 7 days of liquid preservation. Semen samples were prepared using antibiotic free BTS extender and 4 different levels of E. coli were treated to semen with following concentrations; 3,000, 5,000, 7,000, 10,000 CFU/ml of sperms. Semen samples were preserved at $17^{\circ}C$ for 7 days in semen storage until analyzed. Aliquots were subjected to measure the sperm viability, motility and agglutination using computer assisted sperm analysis (CASA) system, acrosome integrity was performed using chlortetracycline (CTC) staining method and hypo-osmotic swelling test was performed using hypotonic solution from day 1 (day of semen collection) to 7. Detrimental effects on sperm motility and viability were observed 3 days after preservation at the level of 5,000 CFU/ml (p<0.05). Percentage of sperm abnormality was higher (p<0.05) in over 5,000 CFU/ml groups. Sperm agglutination rate was also significantly higher (p<0.05) in groups of 5,000 and 7,000 CFU/ml. The rate of acrosome reacted sperm was higher as preservation time goes in all the samples but the pattern was clearly higher among E. coli contaminated groups (p<0.05). The sperm membrane integrity in terms of hypo-osmotic test, E. coli affects little compared to other sperm parameters. The deleterious effects observed due to the bacterial contamination in semen suggest that importance of hygiene protocol to minimize the bacterial contamination during semen collection and processing.

Assessment of Mycobacterial Viability by Fluorospectrophotometry (형광분광측정법에 의한 항산균의 생명력 평가)

  • 이영남
    • Korean Journal of Microbiology
    • /
    • v.24 no.2
    • /
    • pp.147-153
    • /
    • 1986
  • Viable potential of Mycobacterium smegmatis, a slow grower in vitro cultivation and of M. leprae, an obligate intracellular parasitic bacterium, which can not be cultured yet in vitro was assessed by fluorospectrophotometry. Bacterial cells in different numbers and under various physiological status were incubater with fluorescein diacetate(FDA). After an incubation of the bacterial preparations with FDA at specified conditions, amount of fluorescein inside bacteria was measured by a fluorospectrophotometer at 470nm and 510nm of excitation and emission wavelengths, respectively. Fluorounit given by such bacteria showed a correlation with assessment of viability of the same preparations made by other methods, such as optical density and colony forming units of M. smegmatis and intracellular ATP content of M. leprae. The possible use of fluorospectrophotometry in assessing viability or physiological potential of bacteria, particularly intracellular parasites and fastidious organisms to culture in vitro is discussed in relation to other methods.

  • PDF

EFFECT OF CULTURE SUPERNATANT OF BACTERIA ISOLATED FROM INFECTED ROOT CANALS ON CELL LINES (감염 근관에서 분리한 세균 배양액이 배양된 세포에 미치는 영향)

  • Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.761-768
    • /
    • 1997
  • Microorganisms and their by-products are considered to be the major causes of pulpal and periapical pathosis. The role of microorganisms in endodotic infection has been studied regarding the prevalence of particular organisms found in root canal and periapical lesions. The aim of this study was to investigate the effect of culture supernatants of several oral microorganims isolated from infected root canals on the viability of cultured cell lines using colorimetirc assay. S. simulans, S. sciuri, E. faecium, S. intermedius, S. mitis, S. sanguis and S. uberis were incubated in Todd-Hewitt broth for 16 hours. 20 and 100ul of filtered bacterial cell culture supernatants were added to MK and Hep-2 cells. Cell viability was measured using MIT colorimetric assay. 20ul and 100u1 of S. sanguis supernatant showed significant cytotoxicity compared to control on MK cells. 100ul of S. sanguis supernatant significantly depressed viability of HEp-2 cells. E. faecium and S. intermedius did not affect the viability of MK and HEp-2 cells.

  • PDF

Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage

  • Yue, Lifang;Lv, Hexin;Zhen, Jing;Jiang, Shengping;Jia, Shiru;Shen, Shigang;Gao, Lu;Dai, Yujie
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.648-658
    • /
    • 2016
  • Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.