• Title/Summary/Keyword: Bacterial vector

Search Result 169, Processing Time 0.02 seconds

Isolation of a Promoter Element that is Functional in Bacillus subtilis for Heterologous Gene Expression

  • Maeng, Chang-Jae;Kim, Hyung-Kwoun;Park, Sun-Yang;Koo, Bon-Tag;Oh, Tae-Kwang;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.85-91
    • /
    • 2001
  • To construct an efficient Bacillus subtilis expression vector, strong promoters were isolated from the chromosomal DNA libraries of Clostridium acetobutylicum ATCC 4259, Thermoactinomyces sp. E79, and Bacillus thermoglucosidasius KCTC 3400. The $P_{C27}$ promoter cloned from the clostridial chromosmal DNA showed a 5-fold higher promoter strength than the $P_{SP02}$ promoter in the expression of the cat gene, and its sequence was estimated as an upstream region of the predicted hypothetical gene (tet-R family bacterial transcription regulator gene) in C. acetobutylicum. As a promoter element, $P_{C27}$ exhibited putative nucleotide sequences that can bind with bacterial RNAP and the 3'end of the 16S rRNA just upstream of the start codon. In addition, the promoter activity of $P_{C27}$ was distinctively repressed in the presence of glucose. Using $P_{C27}$ as the promoter element, a glucose controllable B. subtilis expression vector was constructed and the lipase gene from Staphylococcus haemolyticus KCTC 8957P was expressed in B. subtilis. When compared with the lipase expression by the T7 promoter induced by IPTG in E. coli, the $P_{C27}$ promoter showed about a 1.5-fold higher expression level in B. subtilis than that without induction.

  • PDF

High-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol

  • Gomaa, Ahmed E.;Deng, Zhiping;Yang, Zhimin;Shang, Liguo;Zhan, Yuhua;Lu, Wei;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.335-341
    • /
    • 2017
  • The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study describes a single and double crossover-recombination system using an optimized vector-free allele-exchange protocol for gene disruption and gene replacement in a single species of the family Pseudomonadaceae. The protocol is based on self-ligation (circularization) for the DNA cassette which has been obtained by overlapping polymerase chain reaction (Fusion-PCR), and carries an antibiotic resistance cassette flanked by homologous internal regions of the target locus. To establish the reproducibility of the approach, three different chromosomal genes (ncRNA31, rpoN, rpoS) were knocked-out from the root-associative bacterium Pseudomonas stutzeri A1501. The results showed that the P. stutzeri A1501 mutants, which are free of any plasmid backbone, could be obtained via a single or double crossover recombination. In order to optimize this protocol, three key factors that were found to have great effect on the efficiency of the homologous recombination were further investigated. Moreover, the modified protocol does not require further cloning steps, and it enables the construction of multiple gene knock-in/out mutants sequentially. This work provides a simple and rapid mutagenesis strategy for genome editing in P. stutzeri, which may also be applicable for other gram-negative bacteria.

Expression of Escherichia coli Heat-labile Enterotoxin B Subunit (LTB) in Saccharomyces cerevisiae

  • Rezaee Mohammad Ahangarzadeh;Rezaee Abbas;Moazzeni Seyed Mohammad;Salmanian Ali Hatef;Yasuda Yoko;Tochikubo Kunio;Pirayeh Shahin Najar;Arzanlou Mohsen
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately $1.9\%$ of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

Development of a Magnetic Bead-Based Method for Specific Detection of Enterococcus faecalis Using C-Terminal Domain of ECP3 Phage Endolysin

  • Yoon-Jung Choi;Shukho Kim;Jungmin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.964-972
    • /
    • 2023
  • Bacteriophage endolysins are peptidoglycan hydrolases composed of cell binding domain (CBD) and an enzymatically active domain. A phage endolysin CBD can be used for detecting bacteria owing to its high specificity and sensitivity toward the bacterial cell wall. We aimed to develop a method for detection of Enterococcus faecalis using an endolysin CBD. The gene encoding the CBD of ECP3 phage endolysin was cloned into the Escherichia coli expression vector pET21a. A recombinant protein with a C-terminal 6-His-tag (CBD) was expressed and purified using a His-trap column. CBD was adsorbed onto epoxy magnetic beads (eMBs). The bacterial species specificity and sensitivity of bacterial binding to CBD-eMB complexes were determined using the bacterial colony counting from the magnetic separations after the binding reaction between bacteria and CBD-eMB complexes. E. faecalis could bind to CBD-eMB complexes, but other bacteria (such as Enterococcus faecium, Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Streptococcus mutans, and Porphyromonas gingivalis) could not. E. faecalis cells were fixed onto CBD-eMB complexes within 1 h, and >78% of viable E. faecalis cells were recovered. The E. faecalis recovery ratio was not affected by the other bacterial species. The detection limit of the CBD-eMB complex for E. faecalis was >17 CFU/ml. We developed a simple method for the specific detection of E. faecalis using bacteriophage endolysin CBD and MBs. This is the first study to determine that the C-terminal region of ECP3 phage endolysin is a highly specific binding site for E. faecalis among other bacterial species.

Bacterial Diversity and its Phylogenetic Analysis in Lake Sapgyo (삽교호의 세균 다양성과 계통분류학적 분석)

  • Kim, Myeong;Jeon, Eun-Hyeong;An, Tae-Yeong
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.272-276
    • /
    • 2003
  • Sapgyo Lake is an artificial freshwater reservoir which is located to the midwest of Korea and is the main water reservoir for industry and agriculture of the region. In this study we investigated environmental factors and the change of bacterial community with the influence of surrounding inflow water and the seasonal variation using the molecular ecological approach. Water samples were collected at front of the dike in May and August, 2001. Bacterial genomic DNAs were extracted directly and purified for the amplification of bacterial 16S rDNA. Clone libraries of the 16S rDNA were constructed using pGEM-T easy vector and RFLP analysis was performed to make a group as OTUs with 4 base recognizing enzymes (MspI and HaeIII). The estimated values of richness in August sample was higher than in May. Thirty-three of 153 clones in May and thirty-eight of 131 clones in August were sequenced from forward region of bacterial 16S rDNA for about 600~800 bp. Proteobacteria, Cytophaga, gram positive bacteria and Verrucomicrobia were observed both months. Especially, Planctomyces, cyanobacteria and chloroplast appeared in August when algal bloom occurred. On the whole investigation, Sapgyo lake showed a typical community structure of estuarine and was influenced by heterochthonous organic matters from the surrounding stream.

Screening of New Antibiotics Inhibiting Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl) (세균의 지방산 생합성 효소 (Enoyl-Acyl Carrier Protein Reductase, FabI)를 저해하는 새로운 항균물질의 스크리닝)

  • 곽진환
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • Enoyl-Acyl Carrier Protein Reductase (Fabl) of bacteria is hem as an important target for new antibacterial drugs and plays a determinant role in completing cycles of elongation in type-H fatty acid synthase system. In this study, a fabI gene from Staphylococcus aureus 6538p cloned in pET-l4b vector and FabI protein was over-produced in Escherichaia coli BL2l (DE3). $NH_2$-terminal His-tagged FabI protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metalaffinity chromatography Purified 6xHis-tagged FabI showed a catalytic activity on tram - 2 - octenoyl - N -acethlcysteamine by utilizing NADPH as a cofactor. For the discovery of new FabI inhibitors from chemical libraries, a target-oriented screening system using a 96-well plate was developed. About 10,000 chemical libraries from Korea Chemical Bank wore tested in this screening system, and 26 chemicals (0.25%) among them showed an inhibitory activity against FabI enzyme. This result showed that a new screening system can be used for the discovery of new FabI inhibitors.

Cloning and Expression of Human Immunodeficiency Virus-1 Epitopes in Escherichia coli (대장균에서 사람의 면역결핍 바이러스-1 epitopes 클로닝과 발현에 대한 연구)

  • 유향숙;장원희;박희동;현상원;남상욱;이영익
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • Human immunodeficiency virus type 1 (HIV-1) causes a deadly infectious disease, Acquired Immunodeficiency Syndrome (ADIS). As a first step to develop a reliable and fast diagnostic procedure for HIV-1 infection, we cloned various immunodominant epitopes of HIV-1 in bacterial expression vectors containing tac or trp promoter. While the protein level of direct expression of gp160 was low, trp E fused gp120, gp41 and p17-p24 were produced at high levels (15-30% of total bacterial proteins) in E. coli. Since gp120 and gp41 contain relatively conserved regions which can react with antibodies in the plasma from most of HIV-1 infected individuals, these expression clones were used for large preparations of HIV-1 antigens.

  • PDF

Role of Metcalfa pruinosa as a Vector for Pseudomonas syringae pv. actinidiae

  • Donati, Irene;Mauri, Sofia;Buriani, Giampaolo;Cellini, Antonio;Spinelli, Francesco
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • After 20 years of steady increase, kiwifruit industry faced a severe arrest due to the pandemic spread of the bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa). The bacterium penetrates the host plant primarily via natural openings or wounds, and its spread is mainly mediated by atmospheric events and cultural activities. Since the role of sucking insects as vectors of bacterial pathogens is widely documented, we investigated the ability of Metcalfa pruinosa Say (1830), one of the most common kiwifruit pests, to transmit Psa to healthy plants in laboratory conditions. Psa could be isolated both from insects feeding over experimentally inoculated plants, and from insects captured in Psa-infected orchards. Furthermore, insects were able to transmit Psa from experimentally inoculated plants to healthy ones. In conclusion, the control of M. pruinosa is recommended in the framework of protection strategies against Psa.

Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2004
  • As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.

Expression and Purification of Human Farnesoid X Receptor-Ligand Binding Domain as Soluble Form Using a Dual Cistronic Expression Vector

  • Kang, Hyun;Ye, Micheal B.;Bahk, Young Yil
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.322-328
    • /
    • 2013
  • In this study, we show the expression and purification of the human recombinant farnesoid X receptor (FXR)- ligand binding domain (LBD) protein in E. coli using a double cistronic vector, pACYCDuet-1, as a soluble form. We describe here the expression and characterization of a biologically active $FXR-LBD_{(248-476)}$. When expressed in the influence of bacterial promoters ($P_{T7}$ and $P_{Tac}$) of the single cistronic expression vectors, the human recombinant $FXR-LBD_{(248-476)}$ was found to be totally insoluble. However, by using a double cistronic expression vector, we were able to obtain the human recombinant $FXR-LBD_{(248-476)}$ in a soluble form. To allow for biological activities, we have subcloned into the pACYCDuet-1 vector, expressed in E. coli cells at some optimized conditions, and purified and characterized the human recombinant active $FXR-LBD_{(248-476)}$ proteins using the fluorescence polarization assay. This suggests that the expression of FXR-LBD in a double cistronic vector improves its solubility and probably assists its correct folding for the biologically active form of the proteins. We suggest that this may represent a new approach to high expression of other nuclear receptors and may be useful as well for other classes of heterodimeric protein partners.