• Title/Summary/Keyword: Bacterial urease inhibitor

Search Result 3, Processing Time 0.015 seconds

In vitro inhibitory activities of urea analogues on bacterial urease

  • Chang, Pan-Sup;Shu, Byung-Se;Nancy A.Strockbine;Kunin, Galvin M
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.163-167
    • /
    • 1986
  • Twenty six urea analogues, most of which have already been approved for human use, were tested for their antiurease activity in vitro. Cell-free extracts obtained from a clinical isolate of Proteus mirabilis was used as the source of enzyme. Acetohydroxamic acid which is a proven potent urease inhibitor but not approved for human use was again shown to be the most active compound among the tested. Phenacemide, cycloserine, and deferoxamine were demonstrated to be moderate inhibitors. Oxtetracycline, trimethoprim, and cefamandole revealed a demonstrable antiruease activity, but only at very high concentrations. The antiurease activity of cycloserine, trimethoprim, and cefamandole was pH dependent-only active at acidic pH. The inhibitory activity of acetohydroxamic acid however was independent of change in pH. The inhibitory activity of acetohydroxamic acid however was independent of change in pH. Hydrogen ion concentration plays an important role in urease activity and acidification (pH 5. 5) alone eliminates approximately 65% of the enzymic activity. Adjustment of pH therefore appears to be an important adjunct in reducing unrease activity and should always be studied to maximize the effcacy of antiurease compounds under investigation.

  • PDF

Evaluation of Urease Inhibition Activity of Zerumbone in vitro (제럼본의 요소가수분해효소 활성 억제 평가)

  • Woo, Hyun Jun;Lee, Min Ho;Yang, Ji Yeong;Kwon, Hye Jin;Yeon, Min Ji;Kim, Do Hyun;Moon, Cheol;Park, Min;Kim, Sa-Hyun;Kim, Jong-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.265-270
    • /
    • 2017
  • A key virulence factor for urinary tract pathogens is the enzyme urease, which catalyzes the hydrolysis of urea into ammonium ions and carbonic acid. Urease activity plays an important role in the pathogenesis of urinary tract infection. In this study, the inhibitory effect of zerumbone against six urease-producing bacteria (Klebsiella oxytoca, K. pneumoniae, Morganella morganii, Proteus mirabilis, P. vulgaris, and Staphylococcus saprophyticus) and their urease activities were evaluated. The results of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that zerumbone had antibacterial effect against these six urease-producing bacteria. The MIC and MBC of zerumbone ranged from 0.5 to 2 mM and 1 to 4 mM, respectively. In the urease inhibitory assay, zerumbone showed better urease inhibition ($56.28{\pm}2.45-37.83{\pm}3.47%$) than the standard urease inhibitor, acetohydroxamic acid ($40.46{\pm}1.94-22.99{\pm}3.53%$). However, zerumbone did not affect the levels of the urease subunit. These results clearly indicated that zerumbone has antibacterial potential against urease-producing bacteria and possesses excellent bacterial urease inhibition properties.

Inhibition of Urea Hydrolysis and Nitrification in Upland Soils by Artemisia asiatica Extracts (쑥 추출물(抽出物)의 밭토양중(土壤中) 요소분해(尿素分解), 질산화(窒酸化) 작용(作用) 억제효과(抑制效果))

  • Lim, Sun-Uk;Shin, Myonug-Ho;Park, Hyun-Jun;Kim, Min-Kyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.392-399
    • /
    • 1998
  • Nitrogen fertilizers such as urea are readily hydrolyzed in soils to produce ammonium ions which pass through nitrification and denitrification processes. These serial processes have drawn attention due to nitrogen losses, eutrophication, blue baby syndrome, and ozone depletion problems. The purpose of this study was to test the inhibitory effects of hot-water extract and organic solvent fractions of Artemisia asiatica leaves on soil urea hydrolysis and nitrification. In addition, the effects of organic solvent fractions on urease activity and ureolytic bacterial population were also investigated. First, hot-water extract of Artemisia asiatica leaves inhibited soil nitrification substantially with a marginal stimulatory effect on soil urea hydrolysis. Soils treated with hot-water extract of Artemisia asiatica leaves showed significant decreases in the accumulation of soil $NO_3-N$ (~68% decrease) compared with the control soil without the treatment of hot-water extract. In contrast, $CHCl_3$/MeOH fraction and basic aqueous layer of Artemisia asiatica leaves inhibited soil urea hydrolysis very strongly, causing 5.8 and 4.3-fold higher accumulation in amounts of remaining urea-N compared with the non-treated soil. Meanwhile, non of the organic solvent fractions showed any significant effects on soil nitrification inhibition. The inhibition of ureolytic bacterial activity by $CHCl_3$/MeOH fraction and aqueous basic layer of Artemisia asiatica leaves without any effects on urease activity itself led us to conclude that the inhibitions of soil urea hydrolysis were caused by the antagonistic effects on ureolytic bacterial activity.

  • PDF