• Title/Summary/Keyword: Bacterial metabolites

Search Result 159, Processing Time 0.024 seconds

Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam

  • Thu Thi Hieu Nguyen;Cristina Bez;Iris Bertani;Minh Hong Nguyen;Thao Kim Nu Nguyen;Vittorio Venturi;Hang Thuy Dinh
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.225-232
    • /
    • 2024
  • The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

Kraft Lignin Decomposition by Forest Soil Bacterium Pseudomonas kribbensis CHA-19

  • Dockyu Kim;Han-Woo Kim;Hyoungseok Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1867-1875
    • /
    • 2024
  • Identification of the biochemical metabolic pathway for lignin decomposition and the responsible degradative enzymes is needed for the effective biotechnological valorization of lignin to renewable chemical products. In this study, we investigated the decomposition of kraft lignin by the soil bacterium Pseudomonas kribbensis CHA-19, a strain that can utilize kraft lignin and its main degradation metabolite, vanillic acid, as growth substrates. Gel permeation chromatography revealed that CHA-19 decomposed polymeric lignin and degraded dehydrodivanillin (a representative lignin model compound); however, the degradative enzyme(s) and mechanism were not identified. Quantitative polymerase chain reaction with mRNAs from CHA-19 cells induced in the presence of lignin showed that the putative genes coding for two laccase-like multicopper oxidases (LMCOs) and three dye-decolorizing peroxidases (DyPs) were upregulated by 2.0- to 7.9-fold compared with glucose-induced cells, which indicates possible cooperation with multiple enzymes for lignin decomposition. Computational homology analysis of the protein sequences of LMCOs and DyPs also predicted their roles in lignin decomposition. Based on the above data, CHA-19 appears to initiate oxidative lignin decomposition using multifunctional LMCOs and DyPs, producing smaller metabolites such as vanillic acid, which is further degraded via ortho- and meta-ring cleavage pathways. This study not only helps to better understand the role of bacteria in lignin decomposition and thus in terrestrial ecosystems, but also expands the biocatalytic toolbox with new bacterial cells and their degradative enzymes for lignin valorization.

Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4

  • Lim, Chae-Sung;Kim, Ji-Young;Choi, Jung-Nam;Ponnusamy, Kannan;Jeon, Yul-Taek;Kim, Soo-Un;Kim, Jeong-Gu;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.494-500
    • /
    • 2010
  • Bacterial blight, an important and potentially destructive bacterial disease in rice, is caused by Xanthomonas oryzae. Recently, this organism has developed resistance to available antibiotics, prompting scientists to find a suitable alternative. This study focused on secondary metabolites of Phomopsis longicolla to target X. oryzae. Five bioactive compounds were isolated by activity-guided fractionation from ethyl acetate extracts of mycelia and were identified by LC/MS and NMR spectroscopy as dicerandrol A, dicerandrol B, dicerandrol C, deacetylphomoxanthone B, and fusaristatin A. This is the first time fusaristatin A has been isolated from Phomopsis sp. Deacetylphomoxanthone B showed a higher antibacterial effect against X. oryzae KACC 10331 than the positive control (2,4-diacetyphloroglucinol). Dicerandrol A also showed high antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and yeast (Candida albicans). In addition, high production yields of these compounds were obtained at the stationary and death phases.

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.52-63
    • /
    • 2018
  • In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.

Biotransformation of Intestinal Bacterial Metabolites of Ginseng Saponin to Biologically Active Fatty-acid Conjugates

  • Hasegawa Hideo;Saiki Ikuo
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.317-334
    • /
    • 2002
  • Ginsenosides are metabolized (deglycosylated) by intestinal bacteria to active forms after oral administration. 20(S)-Protopanaxadiol $20-O-{\beta}-D-glucopyranoside$ (M1) and 20(S)-protopanaxatriol (M4) are the main intestinal bacterial metabolites (IBMs) of protopanaxadiol- and protopanaxatriol-type glycosides. M1 was selectively accumulated into the liver soon after its intravenous (i.v.) administration to mice, and mostly excreted as bile; however, some M1 was transformed to fatty acid ester (EMl) in the liver. EM1 was isolated from rats in a recovery dose of approximately $24mol\%.$ Structural analysis indicated that EM1 comprised a family of fatty acid mono-esters of M1. Because EM1 was not excreted as bile as Ml was, it was accumulated in the liver longer than M1. The in vitro cytotoxicity of M1 was attenuated by fatty acid esterification, implying that esterification is a detoxification reaction. However, esterified M1 (EM1) inhibited the growth of B16 melanoma more than Ml in vivo. The in vivo antitumor activity paralleled with the pharmacokinetic behavior. In the case of M4, orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its spreading to other organs in the body and excretion as bile. The administration of M4 prior to tumor injection abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GMl. Both EM1 and EM4 did not directly affect tumor growth in vitro, whereas EM1 promoted tumor cell lysis by lymphocytes, particularly non-adherent splenocytes, and EM4 stimulated splenic NK cells to become cytotoxic to tumor cells. Thus, the esterification of IBM with fatty acids potentiated the antitumor activity of parental IBM through delay of the clearance and through immunostimulation. These results suggest that the fatty acid conjugates of IBMs may be the real active principles of ginsenosides in the body.

  • PDF

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.

Antimicrobial Compounds Profile During Cheonggukjang Fermentation Against Xanthomonas oryzae pv. oryzae (Xoo)

  • Son, Gun-Hee;Kim, Ji-Young;Muthaiya, Maria John;Lee, Sa-Rah;Kim, Hyang-Yeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1147-1150
    • /
    • 2011
  • Xanthomonas oryzae causes rice bacterial blight, which has been reported as one of the most destructive diseases of rice. Metabolites were identified through cheonggukjang, a traditional Korean fermented soybean product fermented by the Bacillus spp., to control the bacteria. HPLC, MS, and UPLC-Q-TOF-MS analyses were performed to identify metabolites responsible for antimicrobial activity. In this analysis, the m/z values of 253.0498, 283.0600, 269.0455, 992.6287, and 1,006.6436 were identified as daidzein, glycitein, genistein, surfactin B, and surfactin A, respectively. The levels of surfactin B and surfactin A were found to be high at 24 h (4.35 ${\mu}g$/ml) and 36 h (3.43 ${\mu}g$/ml) of fermentation, respectively.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.