• Title/Summary/Keyword: Bacterial degradation

Search Result 332, Processing Time 0.03 seconds

Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon (세균의 유류 분해능에 미치는 온도와 염분의 영향)

  • 오영숙;김상종
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.339-347
    • /
    • 1988
  • The rate of bacterial degradation of hydrocarbon was estimated for the measurment of the self-purification capacity of the aquatic ecosystem. Strain ND601P-2, selected as petroleum degrading bacteria from Nakdong River Estuary with high degradability of petroleum, transformed 42% of hexadecane to $CO_{2}$ or cell mateials under the conditions of $25^{\circ}C$, 0.03M NaCl, 167mg-$NH_{4}^+/1, 950 mg-PO_{4}^{3-}$/1, 50 mg-hexadecane/1. The mineralization rate was found to be significantly affected by the temperature and the $Q_{10}$ value was 2.2. Teh optimal salinity of the strain ND601P-2 was 2o/oo. The increased salinity caused the elevation of % respiration value and the prolonged lag phase.

  • PDF

Test of Degradation of Soman and Sarin Gas by Organophosphorus Acid Anhydrolase and Applicability of the Enzyme to the Development of Nerve Agent Decontaminant (신경작용제 분해효소의 Soman 및 Sarin Gas 분해 능력 측정 및 제독응용 가능성)

  • 김석찬;이남택
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.140-147
    • /
    • 1999
  • A gene expressing organophosphorus acid (OPA) anhydrolases have been cloned from Alteromonas haloplanktis strain and expressed in bacterial strain BL21. Crude extract was prepared from the transformed bacterial strain BL2l and used in testing its degrading capability of real nerve gas, soman and sarin. Within 1 minute after the start of the reaction, nearly 65% of the soman added to the reactant(3mM) was degraded by adding 1 mg of the crude extract enzyme(20.0 Unit $mg^-{1}$ crude protein). In 6 minutes, the reaction reached at its steady state, which indicates that soman was completely degraded by that time. In the case of sarin, the degradation efficiency was observed to be about 0.7 times of that of soman. If the specific activity of OPAA is enhanced by both increased expression efficiency and purification, OPAA seems to be applied for the development of decontaminant of skin, especially of eye.

  • PDF

Acclimation of magnetic activated sludge with 1,4-dioxane and analysis of bacterial flora in the sludge

  • Toshiyuki Nikata;Hayato Ogihara;Yasuzo Sakai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.7-12
    • /
    • 2023
  • Isolation of pollutant-degrading bacteria is important in bioaugmentation, one of the methods for biological degradation of environmental contaminants. We focused on the magnetic activated sludge (MAS) process as a culture method that efficiently concentrates degrading bacteria, and cultured activated sludge with 1,4-dioxane as a model pollutant. After 860 days of operation, MLVSS, which indicates the amount of sludge, increased from 390 mg/L to 10,000 mg/L, and the removal rate of organic matter including 1,4-dioxane, tetrahydrofuran, and glucose in the artificial wastewater reached up to 97%. Based on these results, the MAS process was successfully used to acclimate activated sludge with 1,4-dioxane. Bacterial flora analysis in the MAS showed that bacteria of the genus Pseudonocardia, already reported as 1,4-dioxane degrading bacteria, play an important role in the degradation of this pollutant. The MAS process is a suitable culture method for acclimation of environmental pollutants, and the findings indicate that it can be used as an enrichment unit for pollutant-degrading bacteria.

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue;Rhee Sung-Keun;Bae Jin-Woo;Baek Jong-Hwan;Park Yong-Ha;Lee Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.232-239
    • /
    • 2006
  • The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

Degradation of Triazole Fungicides by Plant Growth-Promoting Bacteria from Contaminated Agricultural Soil

  • Thi Tham Luong;Thi Hong Tham Nguyen;Tien Dat Nguyen;Van Toan Le;Thi Hong Trang Pham;Thanh-Tam Ho;Ngoc-Loi Nguyen
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • The widespread application of triazole fungicides (TFs) in agricultural practices can result in the considerable accumulation of active compound residues in the soil and a subsequent negative impact on the soil microbiota and crop health. In this study, we isolated three TF-degrading bacterial strains from contaminated agricultural soils and identified them as Klebsiella sp., Pseudomonas sp., and Citrobacter sp. based on analysis of morphological characteristics and 16S rRNA gene sequences. The strains used three common TFs, namely hexaconazole, difenoconazole, and propiconazole, as their only sources of carbon and energy for growth in a liquid mineral salt medium, with high concentrations (~ 500 mg/l) of each TF. In addition to the ability to degrade fungicides, the isolates also exhibited plant growth-promoting characteristics, such as nitrogen fixation, indole acetic acid production, phosphate dissolution, and cellulose degradation. The synergistic combination of three bacterial isolates significantly improved plant growth and development with an increased survival rate (57%), and achieved TF degradation ranging from 85.83 to 96.59% at a concentration of approximately 50 mg/kg of each TF within 45 days in the soil-plant system. Based on these findings, the three strains and their microbial consortium show promise for application in biofertilizers, to improve soil health and facilitate optimal plant growth.

Proton Effect on the Degradation of Phenolic Compound by Activated Sludge and Nocardia asteroides (활성슬러지 혼합미생물과 Nocardia asteroides에 의한 페놀화합물 분해시 양성자이온의 영향)

  • 조관형;조영태;우달식
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.561-567
    • /
    • 2002
  • This study was investigated to evaluate the effect of the sodium ion and pH on toxicity of dinitrophenol at high concentrations (0.41 to 0.54 mM), over a sodium concentration range of 0.1 mM to 107 mM and over a pH range of 5 to 9. The concentration of sodium ions in the activated sludge mixed liquor seemed to have very little effect on dinitrophenol toxicity. However, lack of sodium in the growth media resulted in a reduction of the dinitrophenol degradation rate by bacterial isolate from the activated sludge culture, which has been identified as Nocardia asteroides. Dinitrophenol inhibition was found to be strongly dependent on mixed liquor pH. The dinitrophenol degradation rate was highest in the pH range of 6.95 to 7.84; at pH 5.94 degradation of 75 mg/L dinitrophenol was significantly inhibited; at pH < 5.77, dinitrophenol degradation was completely inhibited after approximately 30% of the dinitrophenol was degraded.

Isolation of Cholesterol Utilizing Bacteria and Their Degradation Pattern (콜레스테롤 이용 박테리아의 분리 및 분해 특성)

  • 최민호;조도현;박연희
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.340-346
    • /
    • 1994
  • Six bacterial strains capable to grow on medium containing cholesterol as sole carbon source were isolated from soil, pork fat and cheese. Three of them were tentatively identified as Rhodococcus species, Rhodococcus sp. CD-1, R. sp. CD-2, and R. sp. CD-3. All the isolates showed a varying amount of cholest-4-en-3-one as the degradation product, and three strains of Rhodococcus spp. showed rapid degradation of cholesterol. Radioisotopic studies revealed that cholesterol was degraded to non-sterol hydrophilic compounds via cholest-4-en-3-one, and presumably to C0$_{2}$- These strains showed two distinct patterns in further degradation of cholest-4-en-3-one. By one group, R. sp. CD-1 and R. sp. CD-3, cholest-4-en-3-one was rapidly converted to non-sterol inter- mediates without significant accumulation of sterol derivatives in the culture broth. In contrast, by another group, R. sp. CD-2, the substantial amount of cholest-4-en-3-one was accumulated indica- ting a lower conversion of the compound to the next metabolites.

  • PDF

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

Isolation and Characterization of Bacteria Capable of Degrading Bisphenol A (Bisphenol A 분해세균의 분리 및 특성)

  • 김희식;이영기;이완석;박찬선;윤병대;오희목
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2001
  • Eighty-seven microbial strains capable of growing on bisphenol A (BPA) as a sole carbon source were isolated from soils, waste waters and sludges. Among them, three bacterial strains were finally selected as potential decomposers through measuring BPA-degradation efficiency by HPLC analysis. Two of these bacterial strains were identified as Serratia marcescens 1901 and S. marcescens 1902, and another was Pseudomonas putida 1401 by 16S rDNA partial sequences and based on morphological and physiological properties. They showed higher cell growth and BPA degradation in PAV (PAS medium containing vitamin mixtures) than in PAS medium. The degradation efficiencies of these bacterial strains were within a range of 20-40% in the PAV containing 500 mg/1 or 100 mg/l of BPA fur 3 days. S. marcescens 1901 showed higher degradation efficiency at 100 mg/1 of BPA than those of other selected strains, while S. marcescens 1902 and P. putida 1401 degraded a high concentration of BPA (500 mg/l) with a degradation efficiency of 40% for 3 days. The BPA degradation using a mixed culture of three selected strains showed the similar level of dog-radation efficiency with that using a pure culture.

  • PDF