• Title/Summary/Keyword: Bacterial counts

Search Result 586, Processing Time 0.029 seconds

Assessment of technological characteristics and microbiological quality of marinated turkey meat with the use of dairy products and lemon juice

  • Augustynska-Prejsnar, Anna;Hanus, Pawel;Sokolowicz, Zofia;Kacaniova, Miroslava
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.2003-2011
    • /
    • 2021
  • Objective: The aim of this study was to evaluate the effect of marinating turkey meat with buttermilk and acid whey on the technological traits and microbiological quality of the product. Methods: Slices of turkey meat muscles were marinated for 12 hours in buttermilk (n = 30), acid whey (n = 30) and comparatively, in lemon juice (n = 30). The control group (n = 30) consisted of unmarinated slices of turkey breast muscles. Physical parameters (pH, water holding capacity, colour L*a*b*, shear force, weight loss) were assessed and quantitative and qualitative microbiological evaluation of raw and roasted products was performed. The microbiological parameters were determined as the total viable counts of mesophilic aerobic bacteria, of the Enterobacteriaceae family, and Pseudomonas spp. Bacterial identification was performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Results: Marinating turkey meat in buttermilk and whey compared to marinating in lemon juice and the control sample resulted in a higher (p<0.05) degree of yellow color saturation (b*) and a reduction (p<0.05) in the number of mesophilic aerobic bacteria, Pseudomonas spp. and Enterobacteriaceae family as well as the number of identified mesophilic aerobic bacteria in both raw and roasted samples. The lowest (p<0.05) shear force values were found in products marinated in whey. Conclusion: The use of buttermilk and acid whey as a marinade for meat increases the microbiological safety of the product compared to marinating in lemon juice, while maintaining good technological features of the product.

Effects of Dietary Prebiotics and Probiotics on Growth, Immune Response, Anti-oxidant Capacity and Some Intestinal Bacterial Groups of the Red Seabream Pagrus major (사료 내 Prebiotic과 Probiotics의 첨가가 참돔(Pagrus major)의 성장, 면역력, 항산화력, 장내 미생물 조성 변화에 미치는 영향)

  • Jongho Lim;Gunho Eom;Choong Hwan Noh;Kyeong-jun Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.89-98
    • /
    • 2023
  • We evaluated the effects of prebiotic (mannan oligosaccharides, Mos) and probiotic diet supplements on growth performance, innate immunity, antioxidant activity, and intestinal changes in the microbial flora of red seabream Pagrus major. A basal diet (Con) was formulated to meet the nutrient requirement of red seabream. The dietary starch in Con was replaced with 0.6% Mos, Lactobacillus plantarum, Bacillus subtilis, B. licheniformis and probiotic mixture (labeled as Mos, Pro-LP, Pro-BS, Pro-BL and Pro-Mix, respectively). We stocked 450 fish in 18 polypropylene tanks (400 L) in triplicate groups per dietary treatment. The fish were fed one of the diets twice (08:30, 18:30 h) a day for 63 days. Lysozyme activity was significantly higher in all the supplemented groups than that of the Con group. The immunoglobulin level of Pro-Mix, anti-protease activity of Pro-BL, and glutathione peroxidase and superoxide dismutase activity of Pro-BS, Pro-BL and Pro-Mix groups were significantly higher than those of the Con group. The ratio of total Vibrio/heterotrophic marine bacteria counts was significantly lower in Pro-LP, Pro-BL and Pro-Mix groups than that of the Con group. Therefore, dietary supplementation of Mos and probiotics to improves immune response and antioxidant enzyme activity and inhibits Vibrio bacteria in the intestine.

Utilization of Piper betle L. Extract for Inactivating Foodborne Bacterial Biofilms on Pitted and Smooth Stainless Steel Surfaces

  • Songsirin Ruengvisesh;Pattarapong Wenbap;Peetitas Damrongsaktrakul;Suchanya Santiakachai;Warisara Kasemsukwimol;Sirilak Chitvittaya;Yossakorn Painsawat;Isaratat Phung-on;Pravate Tuitemwong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.771-779
    • /
    • 2023
  • Biofilms are a significant concern in the food industry. The utilization of plant-derived compounds to inactivate biofilms on food contact surfaces has not been widely reported. Also, the increasing negative perception of consumers against synthetic sanitizers has encouraged the hunt for natural compounds as alternatives. Therefore, in this study we evaluated the antimicrobial activities of ethanol extracts, acetone extracts, and essential oils (EOs) of seven culinary herbs against Salmonella enterica serotype Typhimurium and Listeria innocua using the broth microdilution assay. Among all tested extracts and EOs, the ethanol extract of Piper betle L. exhibited the most efficient antimicrobial activities. To evaluate the biofilm inactivation effect, S. Typhimurium and L. innocua biofilms on pitted and smooth stainless steel (SS) coupons were exposed to P. betle ethanol extract (12.5 mg/ml), sodium hypochlorite (NaClO; 200 ppm), hydrogen peroxide (HP; 1100 ppm), and benzalkonium chloride (BKC; 400 ppm) for 15 min. Results showed that, for the untreated controls, higher sessile cell counts were observed on pitted SS versus smooth SS coupons. Overall, biofilm inactivation efficacies of the tested sanitizers followed the trend of P. betle extract ≥ BKC > NaClO > HP. The surface condition of SS did not affect the biofilm inactivation effect of each tested sanitizer. The contact angle results revealed P. betle ethanol extract could increase the surface wettability of SS coupons. This research suggests P. betle extract might be utilized as an alternative sanitizer in food processing facilities.

Rheological, Physical and Sensory Evaluation of Low-Fat Cupuassu Goat Milk Yogurts Supplemented with Fat Replacer

  • Costa, Marion P.;Rosario, Anisio Iuri L.S.;Silva, Vitor L.M.;Vieira, Carla P.;Conte-Junior, Carlos A.
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.210-224
    • /
    • 2022
  • The use of skim milk is a strategy to increase goat milk yogurt acceptability. However, it can negatively affect yogurt rheology because fat plays a vital role in dairy structural integrity. Thus, this study aimed to investigate the effects of fat replacers on the rheological, physical, and sensory parameters of low-fat cupuassu goat milk yogurts during refrigerated storage (28 days). Five goat milk yogurts formulations were carried out: whole yogurt (WY), skim yogurt (SY), skim yogurt with inulin (SIY), skim yogurt with maltodextrin (SMY), and skim yogurt with whey protein (SWY). Treatments were subjected to bacterial counts, chemical composition, pH, water holding capacity, instrumental color and texture, rheological and sensory analyses. All samples showed reducing pH values, water holding capacity, and L* and b* value during storage. Regarding texture, the firmness and consistency decreased during storage. On the other hand, the viscosity index significantly increased during refrigerated storage time. Moreover, all treatments exhibited viscoelastic behaviour. In addition, SIY and SMY showed the highest apparent viscosity. Furthermore, SIY, SMY, and SWY formulations exhibited positive sensory scores for appearance, color, aroma, texture, and viscosity. However, the overall acceptability and purchase intention did not differ statistically between WY and the fat-replacement treatments (SIY, SMY, and SWY). These results indicate that fat substitutes improved the quality of skimmed formulations. Thus, inulin and maltodextrin have the potential as functional fat replaces to produce low-fat goat milk yogurts.

The Characteristics of Microbial Community for Biological Activated Carbon in Water Treatment Plant (생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성)

  • Son, Hee-Jong;Park, Hong-Ki;Lee, Soo-Ae;Jung, Eun-Young;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1311-1320
    • /
    • 2005
  • The purpose of this research is to survey characteristics of microbial community and the removal efficiency of organic materials for biological activated carbon in water treatment plant. Coal based activated carbon retained more attached bacterial biomass on the surface of the activated carbon than the other activated carbon with operating time and materials. The heterotrophic plate count(HPC), eubacteria(EUB) and 4,6-diamidino-2-phenylindole(DAPI) counts were ranged from $0.95{\times}10^7$ to $52.4{\times}10^7$ CFU/g, from $3.8{\times}10^8$ to $134.2{\times}10^8$ cells/g and from $7.0{\times}10^8$ to $250.2{\times}10^8$ cells/g, respectively. The biomass of EUB and DAPI appeared to be much more $10^2$ than HPC, which were increasing in bed volume of 20,000 at the stage of steady-state. The change of microbial community by analyzing fluorescent in situ hybridization(FISH) method with rRNA-targeted oligonucleotide probes, the dominant group was $\alpha$-proteobacteria($\alpha$ group) and high G+C content bacteria(HGC) the lowest distributing rate before reaching the bed volume of 20,000. After reaching the bed volume of 20,000, $\alpha$ group and other groups of bacteria became decreased, on the other hand, the proportion of both $\beta$-proteobacteria($\beta$ group) and $\gamma$-proteobacteri($\gamma$ group) were increasing. Coconut and wood based activated carbons had similar trend with coal based activated carbon, but the rate of $\alpha$ group on coal based activated carbon had gradually increased. Bacterial production with the operating period appeared highest in coal based activated carbon at the range of $1.2{\sim}3.4\;mg-C/m^3{\cdot}h$ while the coconut and wood based activated carbon were ranged from 1.1 to 2.6 $mg-C/m^3{\cdot}h$ and from 0.7 to 3.5 $mg-C/m^3{\cdot}h$ respectively. The removal efficiency of assimilable organic carbon(AOC) showed to be highly correlated with bacterial production. The correlation coefficient between removal efficiency of AOC and bacterial production were 0.679 at wood based activated carbon, 0.291 at coconut based activated carbon and 0.762 at coal based activated carbon, respectively.

Antimicrobial effect of toothbrush with light emitting diode on dental biofilm attached to zirconia surface: an in vitro study (지르코니아 표면에 부착된 바이오필름에 대한 LED 치솔의 항균효과)

  • Park, Jong Hew;Kim, Yong-Gun;Um, Heung-Sik;Lee, Si Young;Lee, Jae-Kwan;Chang, Beom-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.160-169
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the antimicrobial effects of a toothbrush with light-emitting diodes (LEDs) on periodontitis-associated dental biofilm attached to a zirconia surface by static and dynamic methods. Materials and Methods: Zirconia disks (12 mm diameter, 2.5 mm thickness) were inserted into a 24-well plate (static method) or inside a Center for Disease Control and Prevention (CDC) biofilm reactor (dynamic method) to form dental biofilms using Streptococcus gordonii and Fusobacterium nucleatum. The disks with biofilm were subdivided into five treatment groups-control, commercial photodynamic therapy (PDT), toothbrush alone (B), brush with LED (BL), and brush with LED+erythrosine (BLE). After treatment, the disks were agitated to detach the bacteria, and the resulting solutions were spread directly on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy (SEM) was performed to visualize alterations in bacterial morphology. Results: No significant difference in biofilm formation was observed between dynamic and static methods. A significant difference was observed in the number of viable bacteria between the control and all experimental groups (P < 0.05). The percentage of bacterial reduction in the BLE group was significantly higher than in the other treated groups (P < 0.05). SEM revealed damaged bacterial cell walls in the PDT, BL, and BLE groups, but intact cell walls in the control and B groups. Conclusion: The findings suggest that an LED toothbrush with erythrosine is more effective than other treatments in reducing the viability of periodontitis-associated bacteria attached to zirconia in vitro.

Antimicrobial Effects of EcoCal® and GF Bactostop® Formulated in Emulsified Sausages against Lactic Acid Bacteria

  • Lee, Yewon;Cheong, Sunghee;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.279-283
    • /
    • 2020
  • In this study we evaluated the antimicrobial effects of EcoCal® (calcium oxide) and GF Bactostop® (organic acids mix) in sausages during storage at 10℃. The sausages were formulated with 0.1% EcoCal® (0.1ECO), 0.1% EcoCal®+0.5% GF Bactostop® (0.1ECO+0.5GF), 0.2% EcoCal® (0.2ECO), and 0.2% EcoCal®+0.5% GF Bactostop® (0.2ECO+0.5GF). Total aerobic and lactic acid bacteria in the sausages were enumerated on tryptic soy agar and Lactobacilli MRS agar, respectively, during storage at 10℃ for 10 weeks. The 0.1ECO+0.5GF showed the most effective antimicrobial effects on the sausages, and 0.1ECO showed the second most effective antimicrobial effect. Total aerobic bacterial cell counts gradually increased in the control, 0.2ECO, and 0.2ECO+0.5GF groups, but cell growth was generally inhibited in 0.1ECO by approximately day 42 (P<0.05) and 0.1ECO+0.5GF by approximately day 49 (P<0.05). Lactic acid bacterial cell counts gradually increased in the control, 0.2ECO, and 0.2ECO+0.5GF groups, but the lactic acid bacteria growth was inhibited in 0.1ECO by approximately day 49 (P<0.05) and in 0.1ECO+0.5GF by approximately day 64. These results suggest that using 0.1% EcoCal®+0.5% GF Bactostop® in sausage formulation is useful for inhibiting lactic acid bacteria growth, thereby extending the shelf-life of the sausage product.

Microbiological Safety During Delivering of Food Ingredients Supplied to Elementary School Food Services in Daegu and Gyeongbuk Provinces -Seafood, Meat and Frozen Processing Food- (대구.경북지역 학교 급식에 공급되는 식재료의 유통단계별 미생물 평가 - 어육류, 냉동가공 제품 -)

  • Kim, Yun-Hwa;Ryu, Kyung;Lee, Yeon-Kyung
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.276-285
    • /
    • 2009
  • This study evaluated the microbiological quality and safety of food items(seafood, meat, eggs, and frozen food) supplied to elementary school food services, during delivery, and analyzed the distribution/delivery system. To this end, 10 food items supplied by 13 factories in Daegu and Gyeongbuk were chosen for study. Beef and pork were delivered directly to schools in freezer vans. Seafood, chicken, and frozen food were delivered to schools by refrigerated vans(${\leq}10^{\circ}C$) that made other delivery stops before arriving at schools. After food was delivered to schools, total bacterial counts and coliforms(respectively) were as follows: mackerel($2.0{\times}10^2-3.2{\times}10^5$, $<5-4.0{\times}10^3CFU/g$), common squid($2.5{\times}10^4-6.6{\times}10^5$, $1.6{\times}10^2-6.0{\times}10^3CFU/g$), shellfish($3.2{\times}10^5-1.7{\times}10^3$, $4.0{\times}10^3-3.0{\times}10\;CFU/g$), boiled fish paste($1.9{\times}10^4$, <5 CFU/g), beef($9.2{\times}10^2-6.4{\times}10^4$, $<5-2.0{\times}10\;CFU/g$), pork($2.6{\times}10^3-1.3{\times}10^6$, $<5-2.7{\times}10^2CFU/g$), chicken($1.0{\times}10^4$, $2.4{\times}10^2CFU/g$), egg($<5-2.3{\times}10^2$, <5 CFU/g), frozen mandu($3.2{\times}10^3-9.5{\times}10^4$, <5 CFU/g), and frozen noodles($<5-9.0{\times}10$, <5 CFU/g). Bacillus cereus($2.0{\times}10\;CFU/g$) and E. coli($1.0{\times}10\;CFU/g$) were detected on shellfish, and Staphylococcus aureuswas detected on pork($3.1{\times}10\;CFU/g$) and chicken($7.8{\times}10\;CFU/g$). Most food items were double-wrapped in vinyl and placed in corrugated cardboard boxes prior to delivery, and the boxes weremixed with other food items when they were put in the vans. There was no cross-contamination during distribution. However, total shellfish bacterial counts increased slightly. These results indicate that foods need to be completely pasteurized during processing. Frozen food items should not be mixed and should be delivered by freezer vans(${\leq}4^{\circ}C$). The number of stops made during distribution/delivery should be reduced.

Effect of Packaging Methods on the Quality Properties of Stick Type Restructured Jerky (재구성 스틱형 육포의 포장방법이 저장중 품질특성에 미치는 영향)

  • Choi, Yun-Sang;Jeong, Jong-Youn;Choi, Ji-Hun;Han, Doo-Jeong;Kim, Hack-Youn;Lee, Mi-Ai;Paik, Hyun-Dong;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.27 no.3
    • /
    • pp.290-298
    • /
    • 2007
  • The effect of packaging methods on the quality of stick type restructured jerky was investigated in terms of pH, water activity $(A_w)$, TBA (thiobarbituric acid) value, total bacterial counts, and sensory evaluation during storage at room temperature $(25^{\circ}C)$ for 90 days. The jerky was subjected to plastic or vacuum packaging at $(25^{\circ}C)$. The pH decreased slightly as storage time increased (p<0.05), but there were no significant differences between the packaging methods. The water activity of jerky in plastic packaging decreased as storage time increased (p<0.05), however jerky in vacuum packaging showed no significant change. Vacuum packaging resulted in a higher water activity value than plastic packaging. The TBA and hardness values decreased as storage time increased (p<0.05), and there were significant differences between packaging methods during the storage period (p<0.05). The total bacterial counts in vacuum packaged jerky were lower than jerky in plastic packaging. The sensory evaluation of each treatment decreased slightly as storage time increased (p<0.05), however there was no significant difference between packaging methods. Based on our findings, we conclude that vacuum packaging provides more effective storage than common packaging of jerky.

Comparing the Properties and Functionality of Kimchi Made with Korean or Japanese Baechu Cabbage and Recipes (한국산 및 일본산 배추를 이용하여 제조한 한국식 김치와 일본식 김치의 품질 특성과 기능성 비교)

  • Kim, Hee-Young;Kil, Jeung-Ha;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.520-526
    • /
    • 2013
  • To determine the kimchi with the best quality and functional characteristics, we manufactured and compared recipes for Korean and Japanese kimchi made either Korean or Japanese baechu cabbages. All batches were fermented for 4 weeks at $5^{\circ}C$, and tested for pH, texture, microbial count, sensory evaluation, DPPH radical-scavenging activity, and cell proliferation (using the MTT assay on AGS human gastric cancer cells). By the third week of fermentation, Korean kimchi made with Korean baechu (KK) and Japanese kimchi made with Korean baechu (KJ) showed a higher acidity than Korean or Japanese kimchi made with Japanese baechu (JK and JJ, respectively). KK ranked highest in springiness, followed by KJ, JK, and JJ. Therefore, the texture of kimchi produced with Korean baechu was appears better than kimchi produced with Japanese baechu. This was confirmed in masticatory tests. Kimchi produced with Korean baechu (KK and KJ) showed lower total aerobic bacterial counts, while the total lactic acid bacterial counts were higher (p<0.05). In sensory evaluation test, KK received the highest overall acceptability score, while JJ earned the lowest score. In the DPPH assay for anti-oxidative activity, KK showed a 94% anti-oxidative effect, followed by KJ (92%), JK (91%), and JJ (88%) (p<0.05). In the MTT assay for analyzing the cell proliferation of AGS human gastric cancer cells, KK showed a 64% anticancer effect in vitro, followed by KJ (57%), JK (38%), and JJ (26%). Therefore, the anti-oxidative and anti-cancer functionalities of kimchi made with Korean baechu were higher than those made with Japanese baechu, regardless of the kimchi recipe applied. Overall, Korean baechu had important and superior effects on the quality and functionality of kimchi.