• 제목/요약/키워드: Bacterial community structure

Search Result 202, Processing Time 0.024 seconds

Removal of Pb(II) from wastewater by biosorption using powdered waste sludge

  • Jang, Hana;Park, Nohback;Bae, Hyokwan
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • Lead is a highly toxic heavy metal that causes serious health problems. Nonetheless, it is increasingly being used for industrial applications and is often discharged into the environment without adequate purification. In this study, Pb(II) was removed by powdered waste sludge (PWS) based on the biosorption mechanism. Different PWSs were collected from a submerged moving media intermittent aeration reactor (SMMIAR) and modified Ludzack-Ettinger (MLE) processes. The contents of extracellular polymeric substances were similar, but the surface area of MLE-PWS (2.07 ㎡/g) was higher than that of SMMIAR-PWS (0.82 ㎡/g); this is expected to be the main parameter determining Pb(II) biosorption capacity. The Bacillaceae family was dominant in both PWSs and may serve as the major responsible bacterial group for Pb(II) biosorption. Pb(II) biosorption using PWS was evaluated for reaction time, salinity effect, and isotherm equilibrium. For all experiments, MLE-PWS showed higher removal efficiency. At a fixed initial Pb(II) concentration of 20 mg/L and a reaction time of 180 minutes, the biosorption capacities (qe) for SMMIAR- and MLE-PWSs were 2.86 and 3.07 mg/g, respectively. Pb(II) biosorption using PWS was rapid; over 80% of the maximum biosorption capacity was achieved within 10 minutes. Interestingly, MLE-PWS showed enhanced Pb(II) biosorption with salinity values of up to 30 g NaCl/L. Linear regression of the Freundlich isotherm revealed high regression coefficients (R2 > 0.968). The fundamental Pb(II) biosorption capacity, represented by the KF value, was consistently higher for MLE-PWS than SMMIAR-PWS.

Polychlorobiphenyl (PCB) 토양오염복원: PCB 제거 토양미생물들의 군집과 기능을 효과적으로 분석하는 신 genomics 방법개발에 관한 연구

  • Park Jun-Hong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.28-30
    • /
    • 2005
  • Because of high population diversity in soil microbial communities, it is difficult to accurately assess the capability of biodegradation of toxicant by microbes in soil and sediment. Identifying biodegradative microorganisms is an important step in designing and analyzing soil bioremediation. To remove non-important noise information, it is necessary to selectively enrich genomes of biodegradative microorganisms fromnon-biodegradative populations. For this purpose, a stable isotope probing (SIP) technique was applied in selectively harvesting the genomes of biphenyl-utilizing bacteria from soil microbial communities. Since many biphenyl-using microorganisms are responsible for aerobic PCB degradation In soil and sediments, biphenyl-utilizing bacteria were chosen as the target organisms. In soil microcosms, 13C-biphenyl was added as a selective carbon source for biphenyl users, According to $13C-CO_2$ analysis by GC-MS, 13C-biphenyl mineralization was detected after a 7-day of incubation. The heavy portion of DNA(13C-DNA) was separated from the light portion of DNA (12C-DNA) using equilibrium density gradient ultracentrifuge. Bacterial community structure in the 13C-DNAsample was analyzed by t-RFLP (terminal restriction fragment length polymorphism) method. The t-RFLP result demonstates that the use of SIP efficiently and selectively enriched the genomes of biphenyl degrading bacteria from non-degradative microbes. Furthermore, the bacterial diversity of biphenyl degrading populations was small enough for environmental genomes tools (metagenomics and DNA microarrays) to be used to detect functional (biphenyl degradation) genes from soil microbial communities, which may provide a significant progress in assessing microbial capability of PCB bioremediation in soil and groundwater.

  • PDF

Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys

  • Choi, Heebok;Koh, Hyeon-Woo;Kim, Hongik;Chae, Jong-Chan;Park, Soo-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.883-890
    • /
    • 2016
  • Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

Earthworm Enhanced Bioaugmentation of PCB Contaminated Soil

  • Crowley, David E.;Luepromchai, Ekawan;Singer, Andrew S.;Yang, Chang Sool
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.100-107
    • /
    • 2000
  • In a recently developed strategy for in-situ treatment of polychlorinated biphenyls (PCB), bioaugmentation was used in conjunction with a surfactant, sorbitan trioleate, as a carbon source for the degrader bacteria, along with the monoterpene, carvone, and salicylic acid as inducing substrates. Two bacteria were used for soil inoculants, including Arthrobacter sp. st. B1B and Ralstonia eutrophus H850. This methodology achieved 60% degradation of PCBs in Aroclor 1242 after 18 weeks in soils receiving 34 repeated applications of the degrader bacteria. However, an obvious limitation was the requirement for soil mixing after every soil inoculation. In the research reported here, bioaugmentation and biostimulation treatment strategies were modified by using the earthworm, Pheretima hawayana, as a vector for dispersal and mixing of surface-applied PCB-degrading bacteria and soil chemical amendments. Changes in microbial biomass and microbial community structure due to earthworm effects were examined using DNA extraction and PCR-DGGE of 16S rDNA. Results showed that earthworms effectively promoted biodegradation of PCBs in bioaugmented soils to the same extent previously achieved using physical soil mixing, and had a lesser, but significant effect in promoting PCB biodegradation in biostimulated soils treated with carvone and salicylic acid. The effects of earthworms were speculated to involve many interacting factors including increased bacterial transport to lower soil depths, improved soil aeration, and enhanced microbial activity and diversity.

  • PDF

Dominance of Endospore-forming Bacteria on a Rotating Activated Bacillus Contactor Biofilm for Advanced Wastewater Treatment

  • Park, Seong-Joo;Yoon, Jerng-Chang;Shin, Kwang-Soo;Kim, Eung-Ho;Yim, Soo-Bin;Cho, Yeon-Je;Sung, Gi-Moon;Lee, Dong-Geun;Kim, Seung-Bum;Lee, Dong-Uk;Woo, Sung-Hoon;Koopman, Ben
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The bacterial diversity inherent to the biofilm community structure of a modified rotating biological contactor wastewater treatment process, referred to as the Rotating Activated Bacillus Contactor (RABC) process, was characterized in this study, via both culture-dependent and culture-independent methods. On the basis of culture-dependent methods, Bacillus sp. were found to exist in large numbers on the biofilm (6.5% of the heterotrophic bacteria) and the microbial composition of the biofilms was quite simple. Only three phyla were identified-namely, the Proteobacteria, the Actinobacteria (High G+C Gram-positive bacteria), and the Firmicutes (Low G+C Gram-positive bacteria). The culture-independent partial 16S rDNA sequence analysis revealed a considerably more diverse microbial composition within the biofilms. A total of eight phyla were recovered in this case, three of which were major groups: the Firmicutes (43.9%), the Proteobacteria (28.6%), and the Bacteroidetes (17.6%). The remaining five phyla were minor groups: the Planctomycetes (4.4%), the Chlorobi (2.2%), the Actinobacteria (1.1%), the Nitrospirae (1.1%), and the Verrucomicrobia (1.1%). The two most abundant genera detected were the endospore-forming bacteria (31.8%), Clostridium and Bacillus, both of which are members of the Firmicutes phylum. This finding indicates that these endospore-forming bacteria successfully colonized and dominated the RABC process biofilms. Many of the colonies or clones recovered from the biofilms evidenced significantly high homology in the 16S rDNA sequences of bacteria stored in databases associated with advanced wastewater treatment capabilities, including nitrification and denitrification, phosphorus accumulation, the removal of volatile odors, and the removal of chlorohydrocarbons or heavy metals. The microbial community structures observed in the biofilms were found to correlate nicely with the enhanced performance of advanced wastewater treatment protocols.

Change of Sponge(Axinella sp.)-Associated Bacterial Community during the Cultivation with Hexabromobenzene (Hexabromobenzens 농후 배양에 따른 해면(Axinella sp.) 공생 미생물의 군집구조 변화)

  • Seo, Hyun-Seok;Yang, Sung-Hyun;Bae, Seung Seob;Lee, Jung-Hyun;Kwon, Kae Kyoung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.76-83
    • /
    • 2014
  • Bacteria associated with marine sponges seemed to be concerned in halogenation/dehalogenation process of natural compounds. In the present study, the effect of hexabromobenzene (HBB) on the community structure of bacteria associated with a marine sponge Axinella sp. from Chuuk State under anaerobic condition was investigated. Regardless of 100 ppm HBB, most of detected microorganisms displayed high similarity with clones reported from coral or sponges. Amongst, Desulfovibrio marinisediminis like clones were dominant. Clones affiliated with Lentisphaerae and Fusibacter paucivorans (Clostridia) were detected at the conditions without HBB but clones affiliated with Vallitalea guaymasensis (Clostridia) increased its proportion with HBB. From these results and previous reports clones affiliated with D. marinisediminis and V. guaymasensis seemed to be concerned in halogenation/dehalogenation process.

Analysis of Microbial Community During the Anaerobic Dechlorination of Perchloroethylene and Trichloroethylene (Perchloroethylene과 Trichloroethylene의 혐기적 탈염소화 및 미생물 군집 분석)

  • Lee Jae-Won;Kim Byung-Hyuk;Ahn Chi-Yong;Kim Hee-Sik;Yoon Byung-Dae;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.281-286
    • /
    • 2005
  • In this study, the anaerobic enrichment cultivation was performed with the sediments and the dredged soils from the cities of Ulsan, Masan, Yeosu, Gwangyang, Ansan and Seongnam. Acetate as an electron donor and PCE (perchloroethylene) or TCE (trichloroethylene) as an electron acceptor were injected into the serum bottle with an anaerobic medium. After the incubation of 12 weeks, the removal efficiency of PCE was highest at $70\%$ in the treatment with the sediment of Ulsan. Also, the bacterial community structure was analyzed by D-DGGE (double denatured gradient gel electrophoresis) through PCR-based 16S rDNA approaches. The dominant species id the anaerobic enrichment were found to belong to the genus of Desulfovibrio.

Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects (목질섭식곤충의 장내 세균 다양성 분석 및 섬유소 분해균 탐색)

  • Choi, Min-Young;Ahn, Jae-Hyung;Song, Jaekyeong;Kim, Seong-Hyun;Bae, Jin-Woo;Weon, Hang-Yeon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.209-220
    • /
    • 2015
  • In this study, gut bacterial communities in xylophagous insects were analyzed using the pyrosequencing of 16S rRNA genes for their potential biotechnological applications in lignocelluloses degradation. The result showed that operational taxonomic units (OTUs), species richness and diversity index were higher in the hindgut than in the midgut of all insect samples analyzed. The dominant phyla or classes were Firmicutes (54.0%), Bacteroidetes (14.5%), ${\gamma}-Proteobacteria$ (12.3%) in all xylophagous insects except for Rhinotermitidae. The principal coordinates analysis (PCoA) showed that the bacterial community structure mostly clustered according to phylogeny of hosts rather than their habitats. In our study, the two carboxymethyl cellulose (CMC)-degrading isolates which showed the highest enzyme activity were most closely related to Bacillus toyonensis $BCT-7112^T$ and Lactococcus lactis subsp. hordniae $NCDO\;2181^T$, respectively. Cellulolytic enzyme activity analysis showed that ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$ and ${\beta}-1,4-xylanase$ were higher in the hindgut of Cerambycidae. The results demonstrate that xylophagous insect guts harbor diverse gut bacteria, including valuable cellulolytic bacteria, which could be used for various biotechnological applications.

Effects of Sediment Harvesting on Bacterial Community Structure (골재채취가 세균군집구조에 미치는 영향)

  • Park, Ji-Eun;Lee, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.172-178
    • /
    • 2006
  • The dynamics of bacterial populations belonging to $\alpha\;\beta\;\gamma-subclass$ proteobacteria, Cytophaga-Flavobacterium (CF) group and sulfate reducing bacteria (SRB) in water column of the middle reaches of Nakdong River depending on sediment harvesting were analyzed by fluorescent in situ hybridization (FISH) at sediment harvesting site (near the Seongju bridge) and non-sediment harvesting site (near the Gumi bridge). In addition, some physico-chemical parameters such as temperature, pH, $chi-\alpha$ and electrical conductivity were measured. Regarding the number of total cell counts, cells stained by DAPI, there were no substantial quantitative differences between both sites, but those fluctuation at sediment Harvesting site was greater. And also the ratios of CFgroup and SRB to total cell counts tend to increase at sediment harvesting site with higher $chl-\alpha$, maybe due to the resuspension of sediment into water column. But the total proportion of all determined bacterial populations to total cell counts were greater at non-sediment harvesting site, compared with those at sediment harvesting site. Since the detectibility of bacteria by FISH depends on their metabolic activity, those lower proportion at the sediment harvesting site implies that sediment harvesting may lead to malfunction of those bacteria respect to nutrient recycling and subsequently negative effects on microbial food web.

Dynamics of in situ Bacterial Community Structure in the Nak-Dong River (낙동강에서의 세균군집구조의 역동성)

  • Park, Ji-Eun;Yeo, Sang-Min;Lee, Young-Ok
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.363-367
    • /
    • 2004
  • For comparative analysis of the eubacterial community structure at 8 sampling sites throughout the Nak-Dong River, FISH (fluorescence in situ hybridization) method was employed. The total ratio of each determined eubacterial group such as ${\alpha}\;{\cdot}\;{\beta}\;{\cdot}\;{\gamma}-subclasses$proteobacteria and Cytophaga-Flavobacterium(CF) group to total counts(DAPI) at each site varied 9.3-42.5% with the highest value at uppermost part. And each ratio of determined eubacterial groups reached mostly under 10% except that of CF group (23%) at uppermost part. Furthermore, compared to lower part, upper part represented unexpectedly higher proportions of ${\gamma}-subclass$ proteobacteria comprised almost fast growing bacteria on degradable organics. Also the variations of ammonia-oxidizing bacteria ranged from $2.7{\times}10^4$ to $18.0{\times}10^4$ cells $mL^{-1}$ with the lowest value in lower part and the highest value in mid part whereas those of nitrite-oxidizing bacteria varied 5.2-7.7{\times}10^4$ cells $mL^{-1}$ without noticeable differences throughout the sites. Additionally, the ratio of nitrifying bacteria to total counts ranged from 1.0% to 13.6% with no differences between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. In conclusion, FISH method introduced in this study for monitoring, normally used for the quantitative analysis of bacteria, provided also good information on their environmental status in the Nak-Dong River.