• Title/Summary/Keyword: Bacterial community structure

Search Result 202, Processing Time 0.026 seconds

Investigation of the Properties of Sand Tubules, a Biomineralization Product, and their Microbial Community

  • Hu, Weilian;Dai, Dehui
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.364-372
    • /
    • 2016
  • Sand tubules, made up of sand grains cemented by microbe-induced calcium carbonate precipitation, have been found in China's Ningxia Province. Sand tubules grow like a tree's roots about 40-60 cm below the surface. The properties of sand tubules and their bacterial community were examined. X-Ray diffraction analysis revealed that the sand tubules were associated with crystalline calcite. Scanning electron microscopy showed that the crystalline solid had a lamellar structure and lacked the presence of cells, suggesting that no bacteria acted as nucleation sites, nor that the crystalline solid was formed by the aggregation of bacteria. Denaturing gradient gel electrophoresis analysis showed 11 of the 12 detectable bands were uncultured bacteria by BLAST analysis in the GenBank database, and the rest were closely related to Paenibacillus sp. (100% identity). By cultivation techniques, the only strain isolated from the sand tubule was suggested to be related to Paenibacillus sp.; no archaea were found. Furthermore, Paenibacillus sp. was demonstrated to induce calcium carbonate precipitation in vitro.

Comparison of the Performance of MiSeq and HiSeq 2500 in a Microbiome Study

  • Na, Hee Sam;Yu, Yeuni;Kim, Si Yeong;Lee, Jae-Hyung;Chung, Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.574-581
    • /
    • 2020
  • Next generation sequencing is commonly used to characterize the microbiome structure. MiSeq is commonly used to analyze the microbiome due to its relatively long read length. However, recently, Illumina introduced the 250x2 chip for HiSeq 2500. The purpose of this study was to compare the performance of MiSeq and HiSeq in the context of oral microbiome samples. The MiSeq Reagent Kit V3 and the HiSeq Rapid SBS Kit V2 were used for MiSeq and HiSeq 2500 analyses, respectively. Total read count, read quality score, relative bacterial abundance, community diversity, and relative abundance correlation were analyzed. HiSeq produced significantly more read sequences and assigned taxa compared to MiSeq. Conversely, community diversity was similar in the context of MiSeq and HiSeq. However, depending on the relative abundance, the correlation between the two platforms differed. The correlation between HiSeq and MiSeq sequencing data for highly abundant taxa (> 2%), low abundant taxa (2-0.2%), and rare taxa (0.2% >) was 0.994, 0.860, and 0.416, respectively. Therefore, HiSeq 2500 may also be compatible for microbiome studies. Importantly, the HiSeq platform may allow a high-resolution massive parallel sequencing for the detection of rare taxa.

Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee (Apis mellifera)

  • Minji Kim;Woo Jae Kim;Soo-Je Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1495-1505
    • /
    • 2023
  • The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.

Dynamics of Bacterial Communities Analyzed by DGGE during Cyanobacterial Bloom in Daechung Reservoir, Korea (대청호 수화발생시기의 미생물 다양성 및 계통분류학적 분석)

  • Ko, So-Ra;Ahn, Chi-Yong;Lee, Young-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.225-235
    • /
    • 2011
  • The change of microbial communities during cyanobacterial bloom was comparatively analyzed by 16S rDNA PCR-DGGE in Daechung Reservoir during 2003~2005. Morphological analysis showed that Cyanophyceae dominated algal community in the bloom. Dominant cyanobacteria were Microcystis, Planktothrix (Oscillatoria), Phormidium and Anabaena. We used 16S rDNA-denaturing gradient gel electrophoresis (DGGE) profiles and phylogenetic affiliations of the DGGE bands to analyze the community structure and diversity of the predominant microbial community. The DGGE band patterns demonstrated that the most frequent bands were identified as Microcystis during the monitoring periods, Planktothrix also dominated on September 2003 and 2004, whereas Anabaena was showed a peak on September 2005 and Aphanizomenon on August 2003. DGGE and phylogenetic analysis provided us new information that could not be obtained by traditional, morphological analysis. The relationship between cyanobacteria and other aquatic bacteria can be traced and their genetic diversity also identified in detail.

Diversity of Acid-Tolerant Epiphytic Bacterial Communities on Plant Leaves in the Industrial Area and the Natural Forest Area Based on 16S rDNA (16S rDNA 염기서열에 의한 청정지역 및 공단지역 내 식물잎권의 내산성세균 군집의 다양성)

  • 정필문;신광수;임종순;이인수;박성주
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.265-272
    • /
    • 2001
  • The diversity of acid-tolerant epiphytic bacterial communities on deciduous oak tree (Quercus dentate Thunb.) leaves was examined both in the natural forest area with a clean air and in the industrial estate to assess effects of acidic depositions to the phyllosphere using 16S rDNA sequence data. A total of 444 acid-tolerant epiphytic bacterial clones were obtained, resulting in 17 phylotypes by performing a analysis of restriction fragment length polymorphism (RFLP) for PCR-amplified 16S rDNA products. A very low diversity of dominating acid tolerant bacterial communities in both areas was found, just 2 subphyla groups, $\gamma$-Proteobacteria and low-G+C gram-positive bacteria. As tree leaves grow older, diversities of acid-tolerant bacteria on them significantly increased. The community structure of acid-tolerant epiphytic bacteria consisted of Pseudomonas and Enterobacteriaceae groups in the $\gamma$-Proteobacteria subphylum, and Streptococcaceae and Staphylococcus groups in the low-G+C gram-positive bacteria subphylum. The direct influence of acidic depositions on bacterial phylogenetic composition could not be detected especially when higher taxonomic levels such as subphylum, but at narrower or finer levels it could be observed by a detection of Xanthomonadales group belonged to the $\gamma$-Proteobacteria only in the industrial area and of Acetobacteraceae group belonged to the $\alpha$-Proteobacteria. There remains that these specific acid-tolerant epiphytic bacterial groups could be used as indicators for assessing effects of acidic depositions on the phyllosphere.

  • PDF

Comparison of community structure of sulfate reducing bacteria in rice paddy and dry farming soils (논과 밭 토양의 황산염 환원세균 군집 구조 비교)

  • Lee, Jung Bae;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • The goal of this study was to identify relationships between the composition of sulfate reducing bacterial assemblages and terminal restriction fragment length polymorphism (T-RFLP) patterns in rice paddy and dry farming soils. Samples of organic farming soils, conventional farming soils, and dry field farming soils were collected in August and November. Analyses of the soil chemical composition revealed similar total nitrogen, total carbon and total inorganic phosphorus levels; however, the moisture content and total carbon were higher than in the other soils in both August and November, respectively. Sulfate reducing bacteria utilizing lactic acid were more widely distributed than those that used acetic acid, and the number of sulfate reducing bacteria in organic farming soil was most abundant. Phylogenetic analysis based on 181 clones revealed that most showed low similarity with cultured sulfate reducing bacteria, but more than 90% similarity with an uncultured sulfate reducing bacteria isolated from the environment. T-RFLP analysis revealed that fragments of 91, 357, 395, and 474 bp were most common, and the community structure of sulfate reducing bacteria changed seasonally.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

Characterization and Numerical Taxonomy of Heterotrophic Bacterial Community in Naktong Estuarine Ecosystem (낙동강 하구 생태계의 종속영양세균의 군집구조 분석 및 수리학적 분류)

  • 귄오섭;조경제
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.444-449
    • /
    • 1992
  • A total of 858 heterotrohic bacteria were isolated and analyzed hy numerical method to investigate the heterotrophic hacterial community structure in Naktong Estuary. Although the values of H' (Shannon's diversity index). ranged between 1.54 and 3.49. were similar with those of the data hefore the construction of Naktong River barrage, however J' (evenness index. 0.31-0.80) was reduced. Physiological tolerance index for water temperature ($P_{s}$) was high at St.l and 2 whose depthes arc shallower than the other stations. and indices for pH ($P_{h}$) and salinity ($P_{s}$) were high at St. 2. 3. 4 where freshwater and seawater arc mixed. The predominant clusters were identified as Aeromonas. Vihrio. Pseudomonas. Acinelobacter-Morexella. Alcaligenes. Flavobacterium. Micrococcaccae. and Enterohacteriaceae. The kinds nf the isolates were similar with the previous result. hut the dominant genus was changed. These results suggest that the environmental changes in Naktong Estuary affect the hacterial physiological adaptation rather than the composition of heterotrophic hactcrial community.

  • PDF