• Title/Summary/Keyword: Bacterial communities

Search Result 347, Processing Time 0.02 seconds

The Bacterial Community Structure in Cheonho Reservoir Dominated by Cyanobacteria (봄철 Cyanobacteria 가 우점한 천호지에서 세균군집구조의 변화)

  • 홍선희;전선옥;안태석;안태영
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • The composition of bacterial communities was detected in surface water of Cheonho Reservoir dominated by cyanobacteria, using fluorescent in situ hybridization (FISH) method. Total bacterial numbers were very high ranging from 0.6~$1.3{\times}10^7 \cells{\cdot}ml^-1$, whereas the ratio of Eubacteria to total bacteria was 29.8~45.8%, which was lower than that in other freshwater ecosystems. On average only 2.1% of DAPI-stained bacteria were detected by FISH with probes for $\alpha$, $\beta$, and $\gamma$-groups, respectively. Unknown eubacteria which was not bound to any probes except EUB 338, was relatively high. On the other hand, the Cytophaga-Flavobacterium group increased following the change of dominant species from Anabaena sp. to Microcystis sp. This result showed that bacterial communities could be affected by phytoplanktons, especially cyanobacteria.

Community Structure of Bacteria Associated with Two Marine Sponges from Jeju Island Based on 16S rDNA-DGGE Profiles (16S rDNA-DGGE를 이용한 2종의 제주도 해양 해면의 공생세균의 군집 구조)

  • Park, Jin-Sook;Sim, Chung-Ja;An, Kwang-Deuk
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.170-176
    • /
    • 2009
  • Culture-independent 16S rDNA-DGGE profiling and phylogenetic analysis were used to examine the predominant bacterial communities associated with the two sponges, Dictyonella sp. and Spirastrella abata from Jeju island. The culture-independent approach involved extraction of total bacterial DNA, PCR amplification of the 16S ribosomal DNA using primer pair 341f-GC and 518r, and separation of the amplicons on a denaturing gradient gel. Denaturing gradient gel electrophoresis banding patterns indicated 8 and 7 bands from the two sponge species, Dictyonella sp. and Spirastrella abata, respectively. There were not common major bands in two different sponges. Comparative sequence analysis of variable DGGE bands revealed from 93% to 98% similarity to the known published sequences. The dominant bacterial group of Dictyonella sp. belonged to uncultured Gammaproteobacteria, while, that of Spirastrella abata belonged to uncultured Alphaproeobacteria and Firmicutes. DGGE analysis indicated predominant communities of the sponge-associated bacteria differ in the two sponges from the same geographical location. This result revealed that bacterial community profiles of the sponges were host species-specific.

Metagenomic Analysis of Bacterial Communities in Rhododendron mucronulatum in Biseul Mountain County Park, Daegu, Korea (비슬산 군립공원의 진달래에 대한 박테리아 군집 metagenomics 분석 규명)

  • Choi, Doo-Ho;Jeong, Min-Ji;Kwon, Hae-Jun;Kim, Mi-Gyeong;Kim, Dong-Hyun;Kim, Young-Guk;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.32-39
    • /
    • 2020
  • Rhododendron mucronulatum, native to Korea, Mongolia, Russia and parts of northern China, is known not only for its medicinal properties but also as a tourist attraction. One of the most famous tourist destinations with R. mucronulatum is in Biseul Mountain County Park, Daegu, Korea. To investigate the relationship between R. mucronulatum and microbiome communities in the surrounding soil, three sites within the park were chosen for sampling in February and August. The soil samples were then passed through a pyrosequencing process for analysis of the bacterial communities, and a total of 404,899 sequencing reads were obtained. Between 2,349 and 4,736 operational taxonomic units (OTUs) were observed across the three sampling zones and two seasons; samples from the park entrance showed a higher number of OTUs than the other two sites, and samples from August had more OTUs than those from February. The sample from the second observation site displayed the fewest OTUs, particularly in February. According to Chao1 and Shannon indices, samples from the park entrance in August demonstrated the highest degree of species richness and diversity. Studying the bacterial communities across the six samples identified the common population as comprising 287 genera, 45 of which are only present in Biseul Mountain County Park and are expected to participate in the colonization of R. mucronulatum.

Bacterial and fungal community composition across the soil depth profiles in a fallow field

  • Ko, Daegeun;Yoo, Gayoung;Yun, Seong-Taek;Jun, Seong-Chun;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.271-280
    • /
    • 2017
  • Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, ${\beta}$-1,4-glucosidase, cellobiohydrolase, ${\beta}$-1,4-xylosidase, ${\beta}$-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was $125.9({\pm}5.7({\pm}1SE))$, $30.9({\pm}0.9)$, $15.7({\pm}0.6)$, $6.7({\pm}0.9)$, and $3.3({\pm}0.3)nmol\;g^{-1}\;h^{-1}$ at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0-15, 15-30, 30-60, 60-90, and 90-120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.

Molecular Ecological Characterization of Wastewater Bacterial Communities in Response to Algal Growth (조류성장에 따른 하수 박테리아 군집 변화에 관한 분자생태학적 연구)

  • Lee, Ju-Youn;Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.847-854
    • /
    • 2011
  • To deal with issues from global climate changes, renewable bioenergy has become important. Algae have been regarded as a good resource for biorefinery and bioenergy, and also have potential capability to remove nutrient and non-decompositional pollutants for wastewater advanced treatment. Although algal-bacterial ecological interaction would be a crucially important factor in using algae for wastewater advanced treatment and resource recovery from wastewater, very little is known about ecological interaction between algae and bacteria in a real wastewater environment. In this study, under a real municipal wastewater condition, we characterized wastewater pollutant treatability and bacterial communities in response to growth of Ankistrodesmus gracilis SAG278-2, which can grow in wastewater and has a high lipid contents. The growth of algal population using the wastewater was inhibited by increase in wastewater bacteria while bacterial survival and cellular decay rate were not influenced by the algal growth. Removals of recalcitrant organic matters and total nitrogen were improved in the presence of algal growth. According to T-RFLP and statistical analysis, algal growth affected time-course changes in bacterial community structures. The following 16S rRNA gene amplicon, cloning results showed that the algal growth changes in bacterial community structure, and that bacterial populations belonging to Sediminibacterium, Sphingobacterium, Mucilaginibacter genera were identified as cooperative with the algal growth in the wastewater.

Differential Impacts on Bacterial Composition and Abundance in Rhizosphere Compartments between Al-Tolerant and Al-Sensitive Soybean Genotypes in Acidic Soil

  • Wen, Zhong-Ling;Yang, Min-Kai;Fazal, Aliya;Liao, Yong-Hui;Cheng, Lin-Run;Hua, Xiao-Mei;Hu, Dong-Qing;Shi, Ji-Sen;Yang, Rong-Wu;Lu, Gui-Hua;Qi, Jin-Liang;Hong, Zhi;Qian, Qiu-Ping;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1169-1179
    • /
    • 2020
  • In this study, two soybean genotypes, i.e., aluminum-tolerant Baxi 10 (BX10) and aluminumsensitive Bendi 2 (BD2), were used as plant materials and acidic red soil was used as growth medium. The soil layers from the inside to the outside of the root are: rhizospheric soil after washing (WRH), rhizospheric soil after brushing (BRH) and rhizospheric soil at two sides (SRH), respectively. The rhizosphere bacterial communities were analyzed by high-throughput sequencing of V4 hypervariable regions of 16S rRNA gene amplicons via Illumina MiSeq. The results of alpha diversity analysis showed that the BRH and SRH of BX10 were significantly lower in community richness than that of BD2, while the WRH exhibited no significant difference between BX10 and BD2. Among the three sampling compartments of the same soybean genotype, WRH had the lowest community richness and diversity while showing the highest coverage. Beta diversity analysis results displayed no significant difference for any compartment between the two genotypes, or among the three different sampling compartments for any same soybean genotype. However, the relative abundance of major bacterial taxa, specifically nitrogen-fixing and/or aluminum-tolerant bacteria, was significantly different in the compartments of the BRH and/or SRH at phylum and genus levels, indicating genotype-dependent variations in rhizosphere bacterial communities. Strikingly, as compared with BRH and SRH, the WRH within the same genotype (BX10 or BD2) always had an enrichment effect on rhizosphere bacteria associated with nitrogen fixation.

The effect of palm kernel meal supplementation in the diet on the growth performance and meat quality of swine, and on the level of odorous compounds and bacterial communities in swine manure

  • Hwang, Ok-Hwa;Lee, Yoo-Kyoung;Cho, Sung-Back;Han, Deug-Woo;Lee, Sang-Ryoung;Kwag, Jeong-Hoon;Park, Sung-Kwon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.777-787
    • /
    • 2016
  • In the present study, we aimed to investigate the effect of dietary supplementation of palm kernel meal (PKM), as a fermentable carbohydrate source, on the growth performance, meat quality, concentration of odorous compound, and changes in bacterial community in swine manure. Swine (average initial body weight of $51.36{\pm}1.02kg$) were fed diet which included three levels of PKM (0, 2 and 4%), and their manure samples were collected from the slurry pit. Growth performance and meat quality were not affected by PKM treatments (p > 0.05). Levels of phenols and indoles were decreased in the 2 and 4% PKM treatments compared to 0% PKM (control; p < 0.05). Especially, compared to the control, the 2% PKM group showed decreased levels of phenols by 35% and indoles by 34%. Among the dominant bacterial genera, the main change in relative abundance occurred in those belonging to the Firmicutes phylum in PKM treatments. Terrisporobacter and Clostridium were decreased in the PKM groups compared to the control. However, the relative abundance of Intestinibacter, AM406061_g, Coprococcus_g2, Phascolarcotobacterium, EF401875_g, Lactobacillus, and Streptococcus were increased in the PKM group compared to control. Taken together, administration of PKM had a beneficial effect on reducing production of odorous compounds in swine manure, possibly by modulating the communities of predominantly carbohydrate-utilizing bacteria in the large intestine of swine.

Analysis of Community Structure of Metabolically Active Bacteria in a Rice Field Subjected to Long-Term Fertilization Practices

  • Ahn, Jae-Hyung;Choi, Min-Young;Lee, Hye-Won;Kim, Byung-Yong;Song, Jaekyeong;Kim, Myung-Sook;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.585-592
    • /
    • 2013
  • To estimate the effect of long-term fertilization on metabolically active bacterial communities in a rice field, RNA was extracted from endosphere (rice root), rhizosphere, and bulk soil that had been subjected to different fertilization regimes for 59 years, and the 16S rRNAs were analyzed using the pyrosequencing method. The richness and diversity of metabolically active bacteria were higher in bulk soil than in the endosphere and rhizosphere, and showed no significant difference between non-fertilized and fertilized plots. Weighted UniFrac analysis showed that each compartment had characteristic bacterial communities and that the effect of long-term fertilization on the structure of bacterial community was more pronounced in bulk soil than in the endosphere and rhizosphere. The 16S rRNAs affiliated with Alphaproteobacteria and Firmicutes were more abundant in the endosphere than in bulk soil while those affiliated with Chloroflexi and Acidobacteria were more abundant in bulk soil than in the endosphere. Several dominant operational taxonomic units (clustered at a 97% similarity cut-off) showed different frequencies between non-fertilized and fertilized plots, suggesting that the fertilization affected their activities in the rice field.