• Title/Summary/Keyword: Bacterial Nitrogen

Search Result 474, Processing Time 0.031 seconds

Bacterial Community Shift during the Startup of a Full-Scale Oxidation Ditch Treating Sewage

  • Chen, Yajun;Ye, Lin;Zhao, Fuzheng;Xiao, Lin;Cheng, Shupei;Zhang, Xu-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2017
  • The oxidation ditch (OD) is one of the most widely used processes for treating municipal wastewater. However, the microbial communities in the OD systems have not been well characterized, and little information about the shift of bacterial community during the startup process of the OD systems is available. In this study, we investigated the bacterial community changes during the startup period (over 100 days) of a full-scale OD. The results showed that the bacterial community dramatically changed during the startup period. Similar to the activated sludge samples in other studies, Proteobacteria (accounting for 26.3%-48.4%) was the most dominant bacterial phylum in the OD system, but its relative abundance declined nearly 40% during the startup process. It was also found that Planctomycetes proliferated greatly (from 4.79% to 13.5%) and finally replaced Bacteroidetes as the second abundant phylum in the OD system. Specifically, some bacteria affiliated with genus Flavobacterium exhibited remarkable decreasing trends, whereas bacterial species belonging to the OD1 candidate division and Saprospiraceae family were found to increase during the startup process. Despite of the bacterial community shift, the organic matter, nitrogen, and phosphorus in the effluent were always in low concentrations, suggesting the functional redundancy of the bacterial community. Moreover, by comparing with the bacterial community in other municipal wastewater treatment bioreactors, some potentially novel bacterial species were found to be present in the OD system. Collectively, this study improved our understandings of the bacterial community structure and microbial ecology during the startup of a full-scale wastewater treatment bioreactor.

Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants

  • Ahyeon Cho;Alpana Joshi;Hor-Gil Hur;Ji-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.570-579
    • /
    • 2024
  • Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.

Phylogenetic Diversity of Bacteria in an Earth-Cave in Guizhou Province, Southwest of China

  • Zhou, Jun-Pei;Gu, Ying-Qi;Zou, Chang-Song;Mo, Ming-He
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0 %), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.

Responses of Soil Rare and Abundant Sub-Communities and Physicochemical Properties after Application of Different Chinese Herb Residue Soil Amendments

  • Chang, Fan;Jia, Fengan;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.564-574
    • /
    • 2022
  • Microbial diversity in the soil is responsive to changes in soil composition. However, the impact of soil amendments on the diversity and structure of rare and abundant sub-communities in agricultural systems is poorly understood. We investigated the effects of different Chinese herb residue (CHR) soil amendments and cropping systems on bacterial rare and abundant sub-communities. Our results showed that the bacterial diversity and structure of these sub-communities in soil had a specific distribution under the application of different soil amendments. The CHR soil amendments with high nitrogen and organic matter additives significantly increased the relative abundance and stability of rare taxa, which increased the structural and functional redundancy of soil bacterial communities. Rare and abundant sub-communities also showed different preferences in terms of bacterial community composition, as the former was enriched with Bacteroidetes while the latter had more Alphaproteobacteria and Betaproteobacteria. All applications of soil amendments significantly improved soil quality of newly created farmlands in whole maize cropping system. Rare sub-communitiy genera Niastella and Ohtaekwangia were enriched during the maize cropping process, and Nitrososphaera was enriched under the application of simple amendment group soil. Thus, Chinese medicine residue soil amendments with appropriate additives could affect soil rare and abundant sub-communities and enhance physicochemical properties. These findings suggest that applying soil composite amendments based on CHR in the field could improve soil microbial diversity, microbial redundancy, and soil fertility for sustainable agriculture on the Loess Plateau.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

Influence of Diet Induced Changes in Rumen Microbial Characteristics on Gas Production Kinetics of Straw Substrates In vitro

  • Srinivas, Bandla;Krishnamoorthy, U.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.990-996
    • /
    • 2005
  • The effect of diets varying in level and source of nitrogen (N) and fermentable organic matter on dynamic characteristics of microbial populations in rumen liquor and their impact on substrate fermentation in vitro was studied. The diets tested were straw alone, straw+concentrate mixture and straw+urea molasses mineral block (UMMB) lick. The same diets were taken as substrates and tested on each inoculum collected from the diets. Diet had no effect on the amino acid (AA) composition of either bacteria or protozoa. Differences among the diets in intake, source of N and OM affected bacterial and protozoal characteristics in the rumen. Upper asymptote of gas production (Y$\alpha$) had a higher correlation with bacterial pool size and production rate than with protozoal pool size and production rate. Among the parameters of the gas production model, Y$\alpha$ and lag time in total gas has showed significant (p<0.01) correlation with bacterial characteristics. Though the rate constant of gas production significantly differed (p<0.01) between diet and type of straw, it was least influenced by the microbial characteristics. The regression coefficient of diet and type of straw for Y$\alpha$ indicated that the effect of diet on Y$\alpha$ was threefold higher than that of the straw. As microbial characteristics showed higher correlation with Y$\alpha$, and diet had more influence on the microbial characteristics, gas production on a straw diet could be used effectively to understand the microbial characteristics.

Production of Bacterial Cellulose Using Waste of Beer Fermentation Broth (맥주발효 폐액을 이용한 미생물 셀룰로오스 생산)

  • Park, Joog Kon;Hyun, Seung Hoon;Ahn, Won Sool
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Bacterial cellulose (BC) was produced by Gluconacetobacter hansenii PJK (KCTC 10505 BP) strains using the waste of beer fermentation broth. It contained more C and N than a basal medium with a small amount of S and more than 4% ethanol. The amount of BC produced in a shaking culture using the waste of beer fermentation broth was nearly the same as that of a basal medium. The production of BC decreased in a shear stress field in a jar fermenter although the conversion of cellulose producing ($Cel^+$) cells to non-cellulose producing ($Cel^-$) mutants was not severe. This study showed that the waste of beer fermentation broth is an inexpensive carbon, nitrogen source with ethanol and thus a worthy substitute for the conventional medium for BC production.

A Study on the storage of Ginseng Powder by r-Irradiation (방사선조사에 의한 인삼분말의 저장성에 관한 연구)

  • 민옥녀
    • Journal of Environmental Health Sciences
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 1982
  • To determine the effect of r-irradiation on the microorganisms destruction and the changes of general constituents of Ginseng Powder, three samples were analyzed at 1st and 3rd month after r-irradiation. The results were as follows: 1. Total bacterial counts were decreased during storage as the irradiation dose increased. It seems that about 300 Krad was satisfactory to the regulation of ginseng powder. ($5.0 \times 10^4 /g$) 2. Coliform group was also decreased during storage as the irradiation dose increased. Coliform group was not detected at the irradiation dose higher than 500 Krad. 3. Total bacterial counts and coilform group were in proportion to the content of moisture in ginseng powder. 4. The contents of moisture, ash, crude protein, crude lipid and total sugar in ginseng powder during storage had nearly no changes. 5. The content of reducing sugar in ginseng powder during storage had the increasing tendencies as the irradiation dose increased. 6. The content of amino-nitrogen in ginseng powder during storage had the decreasing tendencies as the irradiation does increased.

  • PDF

Effects of N,P,K fertilizer levels and growth condition on the development of Bacterial leaf blight in rice plants (삼요소시비량과 수도생육상태가 백엽고병(벼, 흰빛잎마름병) 발병에 미치는 영향)

  • Kim Chung Hwa;Cho Young Sup
    • Korean journal of applied entomology
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 1970
  • 1. Kum Nam Poong which is highly susceptible to bacterial leaf blight was used as the host plant throughout this experiment. Xanthomonas oryzae 6526 was inoculated on the top of upper leaves by single needle inoculation method. After 14 days, the enlarged spots were examined in the experimental pots. Each of 3 levels of nitrogen, phosphate and potassium pots were arranged at random with three replications. 2. The amounts of nitrogen fertilizer applied and the lesion development of bacterial leaf blight were positively correlated regardless of application of phosphate and potassium fertilizers. 3. The effect of phosphate fertilizer on the lesion development was not significantly different from standard level. The lesion development was stimulated when the amount of phosphate fertilizer was increased as twice as standard level. 4. The inhibitory effect of potassium fertilizer on leaf blight was maximum by applying standard level. The stimulative effect of potassium fertilizer on the lesion development, however, was noticed. when potassium fertilizer applied was increased as twice as the standard level. 5. The heading date and spike number of rice plant were significantly correlated with the lesion development, and such phenomena were depended on the amount of nitrogen fertilizer applied regardless of the other fertilizers applied in this experiment.

  • PDF

Monitoring Nutritional Status of Dairy Cows in Taiwan Using Milk Protein and Milk Urea Nitrogen

  • Hwang, Sen-Yuan;Lee, Mei-Ju;Chiou, Peter Wen-Shyg
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1667-1673
    • /
    • 2000
  • The climate and marketing system of raw milk in Taiwan create problems in balance feeding of protein and energy in lactating cows in Taiwan. Level of urea nitrogen both in bulk milk and serum reflects ruminal protein degradation and post-ruminal protein provision, whereas milk protein concentration responds to dietary energy intake and bacterial protein production in the rumen. Establishment of a range of reference standards in milk protein and urea nitrogen levels can be applied as a noninvasive economical feeding guide to monitor the balance of protein and energy intake. Standard reference levels of 3.0% milk protein and 11-17 mg/dL milk urea nitrogen (MUN) were established. Level of milk protein below 3.0% is regarded as indicating inadequate dietary energy whereas MUN below or above the range is regarded as a deficiency or surplus in dietary protein. Results from analysis of bulk a milk samples collected from 174 dairy herds over Taiwan showed that only one quarter (25.29%) of the herds received a balanced intake of protein and energy, 33.33% adequate protein with energy inadequate, 22.99% herds in protein surplus with energy inadequate, 10.35% herds in protein surplus with energy adequate, 4.6% protein deficiency with energy adequate, and 3.45% herds with both protein and energy inadequate. Energy inadequate herds accounted for 60% of the total dairy herds in Taiwan with 56% adequate, 38% surplus and 6% inadequate in protein. In comparing milk sampled from bulk milk on different seasons from Lee-Kang area in the southern Taiwan, the concentrations of milk fat and milk protein were significantly higher in the cool season (February) than in the warm season (August) (p<0.05), whereas the urea nitrogen in the milk was significantly lower in the cool season than in the warm season (p<0.05). This indicated that lactating cows had excess protein and/or inadequate energy intake in the warm season in this area. It appears that the major problem feeding in lactating cows is energy intake shortage, especially during the warm season in Taiwan.