• Title/Summary/Keyword: Bacterial Inoculation

Search Result 347, Processing Time 0.029 seconds

Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli

  • Lee, Jongchan;Heo, Lynn;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.673-680
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.

Hydrogel Ocular Inserts for the Treatment of Infectious Bovine Keratoconjunctivitis

  • Ryoo, Je-Phil;Greer, R.T.;Rosenbusch, R.F.
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.35-47
    • /
    • 1992
  • Hydrogel coated ring shaped ocular inserts (containing the antibiotic, tylosin tartrate) were used in an evaluation of the effectiveness of polymeric ocular drug release devices for treating infectious bovine keratoconjunctivitis. The in vivo experiments represent the first experiments using hydrogel ocular inserts containing an antibiotic for treating infectious bovine keratoconjunctivitis. In the infection tests, ten calves. were challenged with $2.4{\times}10^8{\sim}1.6{\times}10^9$ Moraxella bovis (a bacterium) colonies per eye following two ten minute ultraviolet radiation eye preconditioning exposures. Ninety five percent of the eyes (19 of 20 eyes) were successfully infected by this method. All infected eyes were monitored for the presence of the bacteria quantitiatively, and clinical observations were made for 14 days. The test was performed by three consecutive steps: 1) inoculation with 2 ultraviolet (UV) radiations, 2) growth of bacterial colonies and 3) treatment with medicated ring-shaped devices. The first. bacteriological measurements after 2 UV exposures were performed at day 3 of the tests. At day 7 after inoculation of both eyes of a calf with M. bovis, a medicated or a non-medicated ring-shaped device was inserted into each eye of a calf. The eye receiving the non-medicated ring was taken as a control for comparison with the eye that received a medicated ring. During the next 7 day period following a medicated ring insertion, the number of bacteria in the treated eyes dropped dramatically to negligible levels (0 to 30 colony forming units/swab), while the control eyes which received a non-medicated ring still exhibited a relatively high number of bacteria ($10^3\;to\;10^6$ colony forming units/swab). The number of bacteria was significantly reduced by the antibiotic released from the medicated ocular insert.

  • PDF

Effect of button mushroom compost on mobilization of heavy metals by sunflower

  • Kyeong, Ki-Cheon;Kim, Yong-Gyun;Lee, Chan-Jung;Lee, Byung-Eui;Lee, Heon-Hak;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 2014
  • The potential ability of Button mushroom compost (BMC) to solubilize heavy metals was estimated with metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strains in BMC were isolated for investigating the mobilization of metals in soil or plant by the strains and identified according to 16S rRNA gene sequence analysis. When metal solubilization potential of BMC was assessed in a batch experiment, the BMC was found to be capable of solubilizing metals in the presence of metals (Co, Pb and Zn) and the results showed that inoculation of BMC could increase the concentrations of water soluble Co, Pb and Cd by 35, 25 and 45% respectively, than those of non-inoculated soils. BMC-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was also evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 27, 25 and 28% respectively in Co, Pb and Zn contaminated soils. Moreover, enhanced accumulation of Co, Pb and Zn in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the BMC. The apparent results suggested that the BMC could effectively be employed in enhancing phytoextraction of Co, Pb and Zn from contaminated soils.

Transcriptional Changes of Plant Defense-Related Genes in Response to Clavibacter Infection in Pepper and Tomato

  • Hwang, In Sun;Oh, Eom-Ji;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.450-458
    • /
    • 2020
  • Pepper and tomato plants infected with two Clavibacter species, C. capsici and C. michiganensis have shown different patterns of disease development depending on their virulence. Here, we investigated how pepper and tomato plants respond to infection by the high-virulent or low-virulent Clavibacter strains. For this, we chose two strains of each Clavibacter species to show different virulence level in the host plants. Although low-virulent strains showed less disease symptoms, they grew almost the same level as the high-virulent strains in both plants. To further examine the response of host plants to Clavibacter infection, we analyzed the expression patterns of plant defense-related genes in the leaves inoculated with different strains of C. capsici and C. michiganensis. Pepper plants infected with high-virulent C. capsici strain highly induced the expression of CaPR1, CaDEF, CaPR4b, CaPR10, and CaLOX1 at 5 days after inoculation (dai), but their expression was much less in low-virulent Clavibacter infection. Expression of CaSAR8.2 was induced at 2 dai, regardless of virulence level. Expression of GluA, Pin2, and PR2 in tomato plants infected with high-virulent C. michiganensis were much higher at 5 dai, compared with mock or low-virulent strain. Expression of PR1a, Osmotin-like, Chitinase, and Chitinase class 2 was increased, regardless of virulence level. Expression of LoxA gene was not affected by Clavibacter inoculation. These results suggested that Clavibacter infection promotes induction of certain defense-related genes in host plants and that differential expression of those genes by low-virulent Clavibacter infection might be affected by their endophytic lifestyle in plants.

Changes in the Microbial Community of the Mottled Skate (Beringraja pulchra) during Alkaline Fermentation

  • Park, Jongbin;Kim, Soo Jin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1195-1206
    • /
    • 2020
  • Beringraja pulchra, Cham-hong-eo in Korean, is a mottled skate which is belonging to the cartilaginous fish. Although this species is economically valuable in South Korea as an alkaline-fermented food, there are few microbial studies on such fermentation. Here, we analyzed microbial changes and pH before, during, and after fermentation and examined the effect of inoculation by a skin microbiota mixture on the skate fermentation (control vs. treatment). To analyze microbial community, the V4 regions of bacterial 16S rRNA genes from the skates were amplified, sequenced and analyzed. During the skate fermentation, pH and total number of marine bacteria increased in both groups, while microbial diversity decreased after fermentation. Pseudomonas, which was predominant in the initial skate, declined by fermentation (Day 0: 11.39 ± 5.52%; Day 20: 0.61 ± 0.9%), while the abundance of Pseudoalteromonas increased dramatically (Day 0: 1.42 ± 0.41%; Day 20: 64.92 ± 24.15%). From our co-occurrence analysis, the Pseudoalteromonas was positively correlated with Aerococcaceae (r = 0.638) and Moraxella (r = 0.474), which also increased with fermentation, and negatively correlated with Pseudomonas (r = -0.847) during fermentation. There are no critically significant differences between control and treatment. These results revealed that the alkaline fermentation of skates dramatically changed the microbiota, but the initial inoculation by a skin microbiota mixture didn't show critical changes in the final microbial community. Our results extended understanding of microbial interactions and provided the new insights of microbial changes during alkaline fermentation.

Suppression of Citrus Canker by Pretreatment with Rhizobacterial Strains Showing Antibacterial Activity (항균활성 식물근권세균 전 처리에 의한 감귤 궤양병 억제)

  • Yang, Ji Seun;Kang, So Young;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important diseases on citrus. Although Satsuma mandarin cultivating mostly in Korea is moderately resistance to canker, occurrence of the disease were more frequently reported since last decade. Like other diseases in citrus, citrus canker was mainly protected by chemical fungicide in the field. Due to the side effect of the chemicals, alternative method of disease control is recently required. In this study four rhizobacterial strains TRH423-3, MRL408-3, THJ609-3 and TRH415-2 are selected by testing its antifungal activity against Xcc. Pre-inoculation with the selected rhizobacterial strains caused disease suppression on the citrus leaves after inoculation with the citrus canker pathogen. Similarly, in the field test symptoms of citrus canker were less developed in the citrus trees applied several times with the selected rhizobacterial strains compared with those of untreated trees. Therefore, it is suggested that the selected rhizobacterial strains may be valuable as an alternative method in the environment-friendly citrus farm.

Silages of Rye Harvested at Different Stages: A Study on Microbial Inoculants Responses in Improving Rye Silage Fermentation Quality

  • Srigopalram, Srisesharam;Ilavenil, Soundharrajan;Kuppusamy, Palaniselvam;Yoon, Yong Hee;Kim, Won Ho;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.189-194
    • /
    • 2017
  • The present study analyzes the role of Lactic Acid Bacteria Mixture (LBM) on improving rye silage quality. Rye of four different stages (Booting, Heading, Flowering, and Late flowering) was collected and silage was prepared. The nutrient profile analysis of experimental silage groups showed no significant changes between control and LBM inoculation. Interestingly, the pH of rye silage in LBM treatments showed significant reduction than control (p<0.05) in all stages of rye silage. However, lowest pH (3.69) resulted on booting stage among other stages of rye. Subsequently significant lactic acid production was noted in all stages of LBM inoculation than control. Conversely maximum lactic acid production of (5.33%DM) was noted at booting stage followed by (4.86%DM) in heading stage. Further the lactic acid bacterial (LAB) count in LBM inoculated group showed significant increase than control. Similarly, the silage of booting stage group registered maximum LAB population ($63.7{\times}10^6CFU/g$) after that heading stage ($32.3{\times}10^6CFU/g$). Further significant reduction in yeast growth and no fungal growth was noted in all LPM treatment groups. Hence, LBM inoculants could be a better additive for improving rye silage quality.

Lactic acid bacteria strains selected from fermented total mixed rations improve ensiling and in vitro rumen fermentation characteristics of corn stover silage

  • Huang, Kailang;Chen, Hongwei;Liu, Yalu;Hong, Qihua;Yang, Bin;Wang, Jiakun
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1379-1389
    • /
    • 2022
  • Objective: This study identified the major lactic acid bacteria (LAB) strains from different fermented total mixed rations (FTMRs) via metataxonomic analysis and evaluated the ability of their standard strain as ensiling inoculants for corn stover silage. Methods: The bacterial composition of eight FTMRs were analyzed by 16S rDNA sequencing. Corn stover was ensiled without LAB inoculation (control) or with 1×106 cfu/g LAB standard strain (Lactobacillus vaginalis, Lactobacillus reuteri, Lactobacillus helveticus, or Lactobacillus paralimentarius) selected from the FTMRs or 10 g/t commercial silage inoculant (CSI) around 25℃ for 56 days. For each inoculation, a portion of the silage was sampled to analyze ensiling characteristics at time intervals of 0, 1, 3, 7, 14, 28, and 56 days, gas production (GP), microbial crude protein and volatile fatty acids as the measurements of rumen fermentation characteristics were evaluated in vitro with the silages of 56 days after 72 h incubation. Results: Lactobacillus covered >85% relative abundance of all FTMRs, in which L. pontis, L. vaginalis, L. reuteri, L. helveticus, and L. paralimentarius showed >4% in specific FTMRs. CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. Silage inoculated with L. paralimentarius and CSI produced more lactic acid the early 14 days. Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. For the in vitro rumen fermentation, silage inoculated with CSI produced more potential GP, isobutyric acid, and isovaleric acid; silage inoculated with L. helveticus produced more potential GP and isovaleric acid, silage inoculated with L. paralimentarius or L. reuteri produced more potential GP only. Conclusion: The standard strain L. paralimentarius (DSM 13238) is a promising ensiling inoculant for corn stover silage. The findings provide clues on strategies to select LAB to improve the quality of silage.

Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper (길항세균 Bacillus sp. KBC1004를 이용한 고추탄저병의 생물학적 방제제 개발)

  • Kang, Hoon-Serg;Kang, Jae-Gon;Park, Jeong-Chan;Lee, Young-Ui;Jeong, Yoon-Woo;Kim, Jeong-Jun;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2015
  • To develop an effective biopesticide to control pepper anthracnose disease, an isolate which showed strong inhibitory effect on the mycelial growth and conidial germination of Colletotrichum acutatum was selected among the antagonistic bacterial isolates collected from pepper grown soil. The bacterial isolate was identified as Bacillus sp. KBC1004 using 16S rRNA sequence analysis. The liquid culture of KBC1004 was freeze-dried and formulated as a wettable powder(WP). The wettable powder form of KBC1004 required at least 24 hours to activate and to inhibit the conidial germination of C. acutatum. In vitro bioassay using the detached green pepper fruits, biocontrol activity of the WP was not recognizable in simultaneous inoculation, but significant disease suppression was observed pre-treatment (24 hr) of the WP before pathogen inoculation. In field experiment, 4 times foliar applications of the 1/500 diluted wettable powder from the end of June showed great control efficacy similar to that of the chemical fungicide application. These results suggest that the formulated WP product could be an alternative mean to control of pepper anthracnose disease in environmentally friendly farming practices.

Isolation and Utilization of Antagonistic Pseudomonas fluorescens from Soils for the Protection of Soybean Sprouts Rot (콩나물 부패병 방제를 위해 토양으로부터 분리한 길항균 Pseudomonas fluorescens의 이용)

  • Kim, Jin-Ho;Joo, Gil-Jae;Choi, Yong-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2001
  • Thirty-three bacterial and fungal strains were isolated from the rotten soybeans and soybean sprouts to isolate pathogenic microorganisms which cause soybean sprouts rot during soybean sprouts cultivation. In pathogenicity tests of the isolates on soybean sprouts, two isolates(K-17 and K-28) caused soybean sprouts rot and were identified as Erwinia carotovora and Fusarium sp., respectively. To isolate antagonists aganist K-17 and K-28 pathogens, bacteria were isolated from various soybean-cultivated soils and screened by the inhibition zone method. A bacterial isolate(J-232) which inhibited growth of both pathogens was identified as Pseudomonas fluorescens and further examined. The culture filtrate of P. fluorescens J-232 (dilution rate of 500 times) inhibited the growth of Erwinia carotovora K-17 and Fusarium sp. K-28 both on potato dextrose agar medium and on soybean sprouts cultivated in vessel. The development of soybean sprouts rots was observed during cultivation by inoculation of soybean seeds with culture filtrate of both pathogens. The combined inoculation of soybean seeds with culture filtrate of antagonistic bacterium and that of pathogens prevented soybean sprouts rot, and the growth of soybean sprouts was similar to that of control. The soybean sprouts inoculated with antagonists culture filtrate alone did not develop soybean sprouts rot, and the growth of the seedlings was shown to be slightly promoted as compared with that of control.

  • PDF