• Title/Summary/Keyword: Bacterial Inoculation

Search Result 347, Processing Time 0.025 seconds

STudies on the Microbial Pigment(I) (미생물의 색소에 관한 연구. 제1보)

  • Ahn, Tae-Seok;Choi, Yong-Keel;Hong, Soon-Woo
    • Korean Journal of Microbiology
    • /
    • v.15 no.4
    • /
    • pp.159-169
    • /
    • 1977
  • The bacteria of red colonies isolated from soil were identified as Serratia marcescens. The best solvent for pigment extraction was n-buthanol and the pigment was identified as prodigiosene. The extracted pigment was stable on temperature and light but not on acidity. The redpigment color changed into red in alkaline solution. The maximum absorbancy of pigment was 466 nm in alkaline condition and 540 nm in acid condition. And the pigment formed single spot on the TLC(starch). By the result of infra red spectrum, the red pigment has the same absorption pattern comparing with, the prodigisin produced by S. marcescens strain Nima. It was confirmed that the pigment was secondary metabolite and that the maximal peak of production appeared at 30 hrs after the inoculation, when the bacterial growth was in statinary state. Referring to the effect of temperature, the pigment was not formed at $36^{\circ}C$ and the optimal temperature for both of bactrial growth and pigmentation was $30^{\circ}C$. The optimal range of pH for pigmentation was 5.0 and under the condition the bacterial growth was not affected at all. Examining the effects of light, the bacterial pigment ation was more increased in darkness than in visible light.

  • PDF

Occurrence of Internal Stipe Necrosis of Cultivated Mushrooms (Agaricus bisporus) Caused by Ewingella americana in Korea

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Yun, Hyung-Sik;Cho, Weon-Dae
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • The internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana, a species of the Enterobacteriaceae. Recently, Ewingella americana was isolated from cultivated white button mushrooms in Korea evidencing symptoms of internal stipe browning. Its symptoms are visible only at harvest, and appear as a variable browning reaction in the center of the stipes. From these lesions, we isolated one bacterial strain (designated CH4). Inoculation of the bacterial isolate into mushroom sporocarps yielded the characteristic browning symptoms that were distinguishable from those of the bacterial soft rot that is well known to mushroom growers. The results of Gram stain, flagellal staining, and biochemical tests identified these isolates as E. americana. This was verified by pathogenicity, physiological and biochemical characteristics, and the results of an analysis of the 16S rRNA gene sequences and the fatty acids profile. This is the first report of the isolation of E. americana from cultivated white button mushrooms in Korea.

Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains

  • Mannaa, Mohamed;Kim, Ki Deok
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.287-295
    • /
    • 2018
  • In this study, we evaluated the effect of different temperatures (10, 20, 30, and $40^{\circ}C$) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.

Cellulitis in Broiler Chickens

  • AMER, Mohamed M.;MEKKY, Hoda M.;FEDAWY, Hanaa S.;AMER, Aziza M.;ELBAYOUMI, Khalid M.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.5
    • /
    • pp.1-10
    • /
    • 2020
  • Cellulitis in broiler chickens is one of the economically important problems that facing the broiler industry due to the presence of the lesion leads to condemnation of part of /or the entire carcasses. Broiler with cellulitis lesions showed lower body weight. Cellulitis was recorded on different body regions including the head, dorsum, thighs, breast, legs, and abdomen. Cellulitis results from the invasion of subcutaneous (s.c.) tissues by bacteria through disruption of skin integrity. Lesions revealed the existence of the characteristic s.c colored exudate varies from yellowish to green, which were either serosanguineous, fibrinous s.c exudate yellowish, greenish or suppurative. Many bacterial isolates including E. coli, Staphylococci, Clostridia, Aeromonas spp., Enterobacter spp., Proteus mirabilis, P. aeruginosa, and Streptococci were isolated from the lesion. Chickens exposed to immunosuppression proved to have a greater probability of developing cellulitis. The condition was experimentally induced by s.c inoculation of 25-day-old broiler chickens with E. coli, S. aureus and clostridia. Usually, bacterial isolates were multidrug-resistant. The usage of Bifidobacterium bifidum or antibiotic with avoiding immunosuppression can reduce lesion and condemnation rate resulted from cellulitis. The objective of this review is to collect different literature written about cellulitis to be available to students, researchers, and veterinarians in poultry practical.

Studies on the Relationship between Inoculum Concentration and Disease Development in Bacterial Leaf Blight of Rice (벼흰빛잎마름병에 있어서 병원균의 접종 농도가 병의 발전속도에 미치는 영향)

  • Cho Yong Sup
    • Korean journal of applied entomology
    • /
    • v.14 no.1 s.22
    • /
    • pp.1-5
    • /
    • 1975
  • The study has been carried out for the development of an inoculation method in screening resistant varieties and/or lines to bacterial leaf blight of rice with special consideration on plant ages and inoculum concentrations. A higher incidence of the disease was found on younger plants than on the older ones when the plants were inoculated with the same concentration of inoculum by clipping method under the same circumstances. Applications of extremly high concentration of inoculum resulted the death of younger seedlings from all varieties within short period after inoculation, and the inoculum that was lower than optimum concentration failed in distinguishing varietal characteristics in regard of resistance. The proper inoculum size for the screening of resistance among the varieties and/or lines depended on the age of plants. The optimum concentration of inoculum for the plant age of 14, 37, 48 and 58days was $10^6,\;10^7,\;10^7-10^{-9}\;and\; 10^9 cells/ml.,$ respectively.

  • PDF

Inhibitory Effects of a Korean Strain Gpf01 Identified as Pseudomonas fluorescens on Cucumber mosaic virus

  • Ipper, Nagesh S.;Kim, Jung-Eun;Koo, Jun-Hak;Hur, Jang-Hyun;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.262-269
    • /
    • 2005
  • An antiviral producing bacterial strain was isolated from a ginseng rhizosphere in Kangwon province of Republic of Korea. In order to identify the bacterial strain, microbiological, physiological and biochemical tests were performed, along with RAPD, 16S rRNA, 16S-23S rRNA ITS (intergenic spacer region) and DNA-DNA hybridization analyses. The bacterium was found to be a strain of Pseudomonas fluorescens, which was designated as Gpf01. The strain was grown in Muller-Hinton (MH) broth, and the culture supernatant obtained was filtered through a $0.45{\mu}l$ filter. It was further boiled at $100^{\circ}C$ and tested in two experiments for its ability to control a yellow strain of Cucumber mosaic virus (CMV-Y). In the first experiment, boiled culture filtrate (RCF) was treated on one half of the leaves of Chenopodium amaranticolor followed by CMV- Y inoculation on both halves. In the second experiment, BCF was treated on the lower leaves of Nicotiana tobacum var. Xanthi-nc, with the CMV-Y mechanically inoculated onto the upper untreated leaves. In the first experiment, BCF treatment was able to considerably reduce the number of viral lesion, and in the second experiment, plants treated with BCF showed no visible viral symptoms compared to the Muller-Hinton (MH) media treated controls 15 days post inoculation (dpi), and remained symptomless throughout the study period. Thus, Gpf01, identified as P. fluorescence, was able to produce an antiviral component in the culture filtrate, which was found to be heat stable, non-phytotoxic and effective in local as well as systemic hosts of CMV.

Stable Expression of TMV Resistance and Responses to Major Tobacco Diseases in the Fifth Generation of TMV CP Transgenic Tobacco

  • Park, Seong-Weon;Lee, Ki-Won;Lee, Cheong-Ho;Kim, Sang-Seock;Park, Eun-Kyung;Choi, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • TMV resistant lines (TRLs) originated from the Blo plant of Nicotiana tabacum cv. NC82 transformed with TMV coat protein cDNA which initially showed delayed disease symptom were selected for increased resistance in each subsequent generation. The result of field experiment of the transgenic tobacco lines in the fifth generation for TMV resistance and their response to other tobacco diseases (black shank, bacterial wilt, and powdery mildew) is described in this report. When fifteen TRLs of the fifth generation were tested for TMV resistance by mechanically inoculating the individual plants, over 95 percent of the plants of 6 lines showed complete resistance even 8 weeks after the inoculation. Average frequency of the resistant plants in TRLs of the fifth generation 8 weeks after the inoculation was 87%. Stable insertion and expression of TMV coat protein cDNA in the fifth generation of the transgenic tobacco plant were confirmed by PCR and immunoblot hybridization, respectively. All TRLs were resistant to the black shank but were susceptible to the bacterial wilt disease and the powdery mildew to the same degree as non-transgenic NC82 was. Therefore, it was indicated that the phenotypes related at least to disease resistance were not changed in the transgenic tobacco. Key words : TMV CP cDNA, TMV resistant tobacco plant, transformation.

  • PDF

Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Brassica juncea: Implications for Microbe-Assisted Phytoremediation

  • Yahaghi, Zahra;Shirvani, Mehran;Nourbakhsh, Farshid;de la Pena, Teodoro Coba;Pueyo, Jose J.;Talebi, Majid
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1156-1167
    • /
    • 2018
  • The aim of this study was to isolate and characterize lead (Pb)-solubilizing bacteria from heavy metal-contaminated mine soils and to evaluate their inoculation effects on the growth and Pb absorption of Brassica juncea. The isolates were also evaluated for their plant growth-promoting characteristics as well as heavy metal and salt tolerance. A total of 171 Pb-tolerant isolates were identified, of which only 15 bacterial strains were able to produce clear haloes in solid medium containing PbO or $PbCO_3$, indicating Pb solubilization. All of these 15 strains were also able to dissolve the Pb minerals in a liquid medium, which was accompanied by significant decreases in pH values of the medium. Based on 16S rRNA gene sequence analysis, the Pb-solubilizing strains belonged to genera Bacillus, Paenibacillus, Brevibacterium, and Staphylococcus. A majority of the Pb-solubilizing strains were able to produce indole acetic acid and siderophores to different extents. Two of the Pb-solubilizing isolates were able to solubilize inorganic phosphate as well. Some of the strains displayed tolerance to different heavy metals and to salt stress and were able to grow in a wide pH range. Inoculation with two selected Pb-solubilizing and plant growth-promoting strains, (i.e., Brevibacterium frigoritolerans YSP40 and Bacillus paralicheniformis YSP151) and their consortium enhanced the growth and Pb uptake of B. juncea plants grown in a metal-contaminated soil. The bacterial strains isolated in this study are promising candidates to develop novel microbe-assisted phytoremediation strategies for metal-contaminated soils.

Multiplication and Movement of Xanthomonas oryzae pv. oryzae in Rice Leaves with Resistance Genes Derived from Different Origins (기원이 다른 저항성 유전자를 갖는 근동질 계통에서 Xanthomonas oryzae pv. oryzae의 증식과 이동)

  • Kang, Sun-Joo;Lee, Sung-Eun;Kim, Min-Jeong;Han, Jin-Soo;Choi, Jae-Eul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.306-311
    • /
    • 2010
  • The multiplication and movement of Xanthomonas oryzae pv. oryzae in rice leaves of seven near-isogenic lines(NILs) derived from different genetic sources and from the susceptible cultivar Toyonishiki were examined. The bacterium populations increased rapidly in susceptible cultivar leaves of the inoculation sites but increased gradually in NIL leaves. X oryzae pv. oryzae were detected at 20cm above the leaves of the inoculated sites in IRBB 103 and Toyonishiki but were not detected in the other NILs at 25 days after inoculation. These results support that resistant genes restrict bacterial movement not multiplication.

Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model

  • Kirthika, Perumalraja;Park, Sungwoo;Jawalagatti, Vijayakumar;Lee, John Hwa
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.41.1-41.15
    • /
    • 2022
  • Background: Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. Objectives: This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. Methods: We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. Results: The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × 107 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. Conclusions: This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.