• 제목/요약/키워드: Bacterial DNA

검색결과 1,098건 처리시간 0.027초

법미생물 검사를 위한 식중독 세균(Bacillus cereus)의 동정 및 독소 유전자 검사법: 국립과학수사연구원 사례보고 (Identification of Food-Poisoning Bacteria (Bacillus cereus) and the Bacterial Toxin Genes for Application to Forensic Microbiology : A Case Report from National Forensic Service)

  • 조윤정;이민호;김효숙;엄기윤;김민희;김종배;이동섭
    • 과학수사학회지
    • /
    • 제11권3호
    • /
    • pp.210-217
    • /
    • 2017
  • 법미생물 검사실에서는 식품의 미생물 분석이 요구되는 경우들이 있다. 국립과학수사연구원에 식품 미생물분석이 의뢰된 샘플들 중에서 Bacillus cereus 균이 분리되었던 일부 증례가 있었다. B. cereus는 식중독을 일으킬 수 있는 중요한 병원성 세균이다. 따라서 우리는 최근 미생물 검사를 위해 의뢰된 멸치액젓에서 B. cereus를 분리한 후, 16S rDNA 서열을 기반으로 하는 MSId 방법 및 real-time PCR 법에 따라 균을 동정 하였다. 또한 설사 독소 유전자 및 구토 독소 유전자 검출을 위한 PCR을 실시하고 B. cereus 분리 균주에서 nheABC, bceT 및 entFM 설사 독소 유전자의 존재를 확인하였다. 임상적으로 중요한 몇 가지 식중독 세균들은 식품 미생물 검사 시 주목해야 할 필요가 있다. 특히, 이러한 식중독 세균들 중에서 B. cereus는 환경저항성 및 내열성이 강한 내생포자를 형성하고, 내열성 독소를 형성할 수도 있기 때문에 조리된 음식을 섭취해도 식중독을 일으킬 수 있다. 본 연구를 통해서 B. cereus등의 임상적으로 중요한 세균을 구별하는 것이 식품미생물 검사 시 중요함을 강조하고, 또한 법미생물 검사실에 앞으로 의뢰될 식품미생물 분석 사례들을 위해 B. cereus의 식별 및 세균의 독소 유전자 검출을 위한 지침을 제공 하고자 한다.

지리적 기원이 다른 고추 더뎅이병균 균주 Genomic DNA의 RFLP 분석 (Restriction Fragment Length Polymorphisms of Genomic DNA in Strains of Xanthomonas campestris pv. vesicatoria)

  • 정희정
    • 한국식물병리학회지
    • /
    • 제12권2호
    • /
    • pp.162-168
    • /
    • 1996
  • 우리 나라의 주요 고추 재배지와 미국, 대만, 호주, 아르헨티나에서 수집된 44 개 고추 더뎅이병균(Xanthomonas campestris pv. vesicatoria)균주간의 유전적변이를 genomic DNA의 restriction fragment length polymorphism(RFLP)에 의해 분석하였다. Genomic DNA RFLP profiles을 cluster 분석하여 얻은 dendrogram에서 지리적 기원이 다른 44개 균주들은 11개 RFLP 그룹으로 분류되었다. 외국 균주들은 genomic DNA의 RFLP 분석에 의해 모두 각각 다른 RFLP 그룹으로 분류되었다. 외국 균주들 중에서 미국 균주는 우리 나라 일부 균주들과 밀접한 유전적 관련성을 가지고 함께 cluster를 이루었는데, 이것은 이 균주들이 동일한 고추 더뎅이병균의 조상 균주 집단에서 유래했으리라는 것을 시사해 준다. 우리 나라 균주들은 6개의 RFLP 그룹으로 분류되었다. 대부분의 우리 나라 균주들은 가까운 cluster를 이루며 미국 균주를 제외한 외국 균주들과 뚜렷하게 구분되었다. 그러나 우리 나라 균주들 중에서 마산에서 수집된 Ms93-1은 다른 우리 나라 균주들과 뚜렷하게 구분되었다. 유전적으로 격리된 균주의 출현은 우리 나라에서 지리적 기원이 다른 고추 더뎅이병균 균주 사이에 이미 발생한 다양한 유전적 분화의 결과라고 추론된다.

  • PDF

Pseudomonas syringae pv. tabaci의 독소생성에 미치는 Phage의 영향 (Influence of Phage on Production of Tabtoxin by Pseudomonas syringae pv.tabaci)

  • 전홍기;유진삼;성영림;백형석
    • 한국미생물·생명공학회지
    • /
    • 제22권3호
    • /
    • pp.246-251
    • /
    • 1994
  • Pseudomonas syringae pv. tabaci(Pa45) Tox$^{-}$ cells were infected with phage Ps90 strain isolated form the natural source, and the Ps90 lysogenized bacterial cells were then obtained. The lyxohenized cells produced tabtoxin and the phage induction occured when the cells treated with mitomycin C. The Southren hybridization alnalysis of the four EcoRI-treated plasmid fragments and the EcoRI-digested genomic DNA of Tox$^{+}$ and Tox$^{-}$ strains using phage DNA as a probe showed that only those DNA fragment of Tox$^{+}$ strain were related to the Ps90 phage DNA. Based on these results, the tabtoxin producing DNA fragments of the bacteris are presumed to have originated from the same phage DNA, and to be responsible for the pathogenecity of the bactrial strains.

  • PDF

Two Bacterial Entophytes Eliciting Both Plant Growth Promotion and Plant Defense on Pepper (Capsicum annuum L.)

  • Kang, Seung-Hoon;Cho, Hyun-Soo;Cheong, Hoon;Ryu Choong-Min;Kim, Ji-Hyun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.96-103
    • /
    • 2007
  • Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of $10^6-10^7CFU/g$ tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria.

Analysis of Bacterial Diversity and Community Structure in Forest Soils Contaminated with Fuel Hydrocarbon

  • Ahn Jae-Hyung;Kim Mi-Soon;Kim Min-Cheol;Lim Jong-Sung;Lee Goon-Taek;Yun Jun-Ki;Kim Tae-Sung;Kim Tae-San;Ka Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.704-715
    • /
    • 2006
  • Oil spill was found in 1999 from a diesel storage facility located near the top of Baekun Mountain in Uiwang City. Application of bioremediation techniques was very relevant in removing oil spills in this site, because the geological condition was not amenable for other onsite remediation techniques. For efficient bioremediation, bacterial communities of the contaminated site and the uncontaminated control site were compared using both molecular and cultivation techniques. Soil bacterial populations were observed to be stimulated to grow in the soils contaminated with diesel hydrocarbon, whereas fungal and actinomycetes populations were decreased by diesel contamination. Most of the dieseldegrading bacteria isolated from contaminated forest soils were strains of Pseudomonas, Ralstonia, and Rhodococcus species. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the profiles were different among the three contaminated sites, whereas those of the control sites were identical to each other. Analysis of 16S rDNA sequences of dominant isolates and clones showed that the bacterial community was less diverse in the oil-contaminated site than at the control site. Sequence analysis of the alkane hydroxylase genes cloned from soil microbial DNAs indicated that their diversity and distribution were different between the contaminated site and the control site. The results indicated that diesel contamination exerted a strong selection on the indigenous microbial community in the contaminated site, leading to predominance of well-adapted microorganisms in concurrence with decrease of microbial diversity.

Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

  • Guo, Yan;Zhang, Jinliang;Yan, Yongfeng;Wu, Jian;Zhu, Nengwu;Deng, Changyan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권6호
    • /
    • pp.888-895
    • /
    • 2015
  • Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost.

Isolation and Characterization of Bacteria Associated with Two Sand Dune Plant Species, Calystegia soldanella and Elymus mollis

  • Park Myung Soo;Jung Se Ra;Lee Myoung Sook;Kim Kyoung Ok;Do Jin Ok;Lee Kang Hyun;Kim Seung Bum;Bae Kyung Sook
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.219-227
    • /
    • 2005
  • Little is known about the bacterial communities associated with the plants inhabiting sand dune ecosystems. In this study, the bacterial populations associated with two major sand dune plant species, Calystegia soldanella (beach morning glory) and Elymus mollis (wild rye), growing along the costal areas in Tae-An, Chungnam Province, were analyzed using a culture-dependent approach. A total of 212 bacteria were isolated from the root and rhizosphere samples of the two plants, and subjected to further analysis. Based on the analysis of the 16S rDNA sequences, all the bacterial isolates were classified into six major phyla of the domain Bacteria. Significant differences were observed between the two plant species, and also between the rhizospheric and root endophytic communities. The isolates from the rhizosphere of the two plant species were assigned to 27 different established genera, and the root endophytic bacteria were assigned to 21. Members of the phylum Gammaproteobacteria, notably the Pseudomonas species, comprised the majority of both the rhizospheric and endophytic bacteria, followed by members of Bacteroidetes and Firmicutes in the rhizosphere and Alphaproteobacteria and Bacteroidetes in the root. A number of isolates were recognized as potentially novel bacterial taxa. Fifteen out of 27 bacterial genera were commonly found in the rhizosphere of both plants, which was comparable to 3 out of 21 common genera in the root, implying the host specificity for endophytic populations. This study of the diversity of culturable rhizospheric and endophytic bacteria has provided the basis for further investigation aimed at the selection of microbes for the facilitation of plant growth.

토마토 궤양병 신속 진단을 위한 Clavibacter michiganensis의 PCR 검출법 (PCR Detection Method for Rapid Diagnosis of Bacterial Canker Caused by Clavibacter michiganensis on Tomato)

  • 박미정;백창기;박종한
    • 식물병연구
    • /
    • 제24권4호
    • /
    • pp.342-347
    • /
    • 2018
  • Clavibacter michiganensis는 토마토에 궤양병을 일으키는 식물병원성 세균으로 인공배지에서 자라는 속도가 매우 느리기 때문에 감염조직으로부터 병원균을 분리 배양하는 방법을 통해서는 진단하기가 쉽지 않다. 또한 토마토 궤양병균은 식물체 내에서 오랜 잠복기를 거친 후에 병징을 나타내기 때문에 방제하기 어려운 세균병 중에 하나이므로 발병 시 신속한 진단을 통해 빠른 방제가 이루어져야 한다. 본 연구에서는 토마토 궤양병균의 검출을 위한 특이 프라이머를 제작함으로써 감염 식물체의 direct PCR을 통해 토마토 궤양병에 대한 빠르고 정확한 진단이 가능하도록 하였다. 새로 개발된 CmmF와 CmmR 프라이머 세트로 PCR을 수행했을 때, 토마토 궤양병균의 16-23S ribosomal RNA intergenic spacer 영역에서 약 165 bp의 단일 밴드가 특이적으로 증폭되었다. 반면에 토마토 궤양병균과 유연관계에 있는 고추 궤양병균이나 다른 Clavibacter 종 세균에서는 전혀 증폭되지 않는 것을 확인할 수 있었다. 이 방법은 감염 식물체로부터 DNA를 추출하지 않더라도 감염조직의 즙액에서 바로 토마토 궤양병균의 DNA 증폭이 가능하고 총 진단시간을 줄일 수 있다는 이점이 있기 때문에 토마토 궤양병의 진단에 유용하게 사용될 수 있을 것으로 판단된다.

Denaturing Gradient Gel Electrophoresis Analysis of Bacterial Populations in 5-Stage Biological Nutrient Removal Process with Step Feed System for Wastewater Treatment

  • Lee, Soo-Youn;Kim, Hyeon-Guk;Park, Jong-Bok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment.

Overexpression of cysteine protease in transgenic Brassica rapa enhances resistance to bacterial soft rot and up-regulate the expression of various stress-regulated genes

  • Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.327-336
    • /
    • 2010
  • Cysteine proteases have been known as a critical factor in plant defense mechanisms in pineapple, papaya, or wild fig. Papain or ficin is one kind of cysteine proteases that shows toxic effects to herbivorous insects and pathogenic bacteria. However, resistance to bacterial soft rot of plants genetically engineered with cysteine protease has been little examined thus far. We cloned a cysteine protease cDNA from Ananas comosus and introduced the gene into Chinese cabbage (Brassica rapa) under the control of the cauliflower mosaic virus 35S promoter. The transgene was stably integrated and actively transcribed in transgenic plants. In comparisons with wild-type plants, the $T_2$ and $T_3$ transgenic plants exhibited a significant increase in endo-protease activity in leaves and enhanced resistance to bacterial soft rot. A cDNA microarray analysis revealed that several genes were more abundantly transcribed in the transgenic than in the wild type. These genes encode a glyoxal oxidase, PR-1 protein, PDF1, protein kinase, LTP protein, UBA protein and protease inhibitor. These results suggest an important role for cysteine protease as a signaling regulator in biotic stress signaling pathways, leading to the build-up of defense mechanism to pathogenic bacteria in plants.