• Title/Summary/Keyword: Backscattering image

Search Result 44, Processing Time 0.023 seconds

New Simple Decomposition Technique for Polarimetric SAR Images (완전편파 SAR영상의 새로운 영상 분해 기법)

  • Lee, Kyung-Yup;Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper proposes a new decomposition technique for polarimetric synthetic aperture radar (SAR) images. This new decomposition technique is based on the degree of polarization (DoP) and co-polarized phase-difference (CPD) of the measured polarimetric backscattering coefficients. This decomposition technique is compared with the existing three- and four-component decomposition techniques with the ALOS PALSAR full polarimetric L-band data acquired in 2009. It is shown that the new decomposition technique is better or comparable to the existing techniques for the study areas such as sea, bare soil, forest, and urban area.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

Report of Wave Glider Detecting by KOMPSAT-5 Spotlight Mode SAR Image (KOMPSAT-5 Spotlight Mode SAR 영상을 이용한 웨이브글라이더 탐지 사례 보고)

  • Lee, Yoon-Kyung;Kim, Sang-Wan;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.431-437
    • /
    • 2018
  • We analyzed the feasibility of detecting wave gliders moving on the sea surface using SAR images. For the experiment, a model was constructed and placed on the sea using a towing ship before and after the satellite observation time. In the acquisition of KOMPSAT-5 image, high resolution SAR data of spotlight mode was collected considering the small size of wave glider. As a result of the backscattering intensity analysis around the towing ship along with wave glider, several scattering points away from the ship were observed, which are not strong but clearly distinguished from the surrounding clutter values. Considering the distance from the center of the ship, it seems to be a signal by the wave glider. On the other hand, it is confirmed that the wave glider can be detected even at the very low false alarm rate ($10^{-6}$) of the target detection using CFAR. Although the scatter signal by the wave glider could be distinguished from the surrounding ocean clutter in the high resolution SAR image, further research is needed to determine if actual wave gliders are detected in various marine environments.

Exploitation of Dual-polarimetric Index of Sentinel-1 SAR Data in Vessel Detection Utilizing Machine Learning (이중 편파 Sentinel-1 SAR 영상의 편파 지표를 활용한 인공지능 기반 선박 탐지)

  • Song, Juyoung;Kim, Duk-jin;Kim, Junwoo;Li, Chenglei
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.737-746
    • /
    • 2022
  • Utilizing weather independent SAR images along with machine learning based object detector is effective in robust vessel monitoring. While conventional SAR images often applied amplitude data from Single Look Complex, exploitation of polarimetric parameters acquired from multiple polarimetric SAR images was yet to be implemented to vessel detection utilizing machine learning. Hence, this study used four polarimetric parameters (H, p1, DoP, DPRVI) retrieved from eigen-decomposition and two backscattering coefficients (γ0, VV, γ0, VH) from radiometric calibration; six bands in total were respectively exploited from 52 Sentinel-1 SAR images, accompanied by vessel training data extracted from AIS information which corresponds to acquisition time span of the SAR image. Evaluating different cases of combination, the use of polarimetric indexes along with amplitude values derived enhanced vessel detection performances than that of utilizing amplitude values exclusively.

Wind Field Estimation Using ERS-1 SAR Data: The Initial Report

  • Won, Joong-Sun;Jeong, Hyung-Sup;Kim, Tae-Rim
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.286-291
    • /
    • 1998
  • SAR has provided weather independent images on land and sea surface, which can be used for extracting various useful informations. Recently attempts to estimate wind field parameters from SAR images over the oceans have been made by various groups over the world. Although scatterometer loaded in ERS-1 and ERS-2 observes the global wind vector field at spatial resolution of 50 Km with accuracies of $\pm$2m/s in speed, the spatial resolution may not be good enough for applications in coastal regions. It is weil known the sea surface roughness is closely correlated to the wind field, but the wind retrieval algorithms from SAR images are yet in developing stage. Since the radar backscattering properties of the SAR images are principally the same as that of scatterometer, some previous studies conducted by other groups report the success in mesoscale coastal wind field retrievals using ERS SAR images. We have tested SWA (SAR Wind Algorithm) and CMOD4 model for estimation of wind speed using an ERS-1 SAR image acquired near Cheju Island, Korea, in October 11, 1994. The precise estimation of sigma nought and the direction of wind are required for applying the CMOD4 model to estimate wind speed. The wind speed in the test sub-image is estimated to be about 10.5m/s, which relatively well agrees to the observed wind speed about 9.0m/s at Seoguipo station. The wind speed estimation through the SWA is slightly higher than that of CMOD4 model. The sea surface condition may be favorable to SWA on the specific date. Since the CMOD4 model requires either wind direction or wind speed to retrieve the wind field, we should estimate the wind speed first using other algorithm including SWA. So far, it is not conclusive if the SWA can be used to provide input wind speed data for CMOD4 model or not. Since it is only initial stage of implementing the wind field retrieval algorithms and no in-situ observed data is currently avaliable, we are not able to evaluate the accuracy of the results at the moment. Therefore verification studies should be followed in the future to extract reliable wind field information in the coastal region using ERS SAR images.

  • PDF

Comparative Analysis of Bathymetry in the Dongdo and the Seodo, Dokdo using Multibeam Echosounder System (다중빔 음향 측심기를 이용한 독도 동도와 서도 남부 연안 해저지형 비교 분석)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • In this study, we analyze precise seabed geomorphology and conditions for comparing the nearshore areas of the Dongdo(East Island) and the Seodo(West Island) using detailed bathymetry data and seafloor backscattering images, in Dokdo, the East Sea. We have been obtained the detailed bathymetry data and the seafloor backscattering data. The survey range is about $250m{\times}250m$ including land of islets to the nearshore areas of the southern part of the Dongdo and the Seodo. As a result of bathymetry survey, the southern area of the Dongdo(~50 m) is deeper than the Seodo(~30 m) in the water depth. The survey areas are consist of extended bedrocks from land of the Dongdo and the Seodo. The underwater rock region of the Seodo is larger than the Dongdo. In spite of similar extended rocks features from islets, there are some distinctive seabed characteristics between the southern nearshore areas of the Dongdo and the Seodo. The Talus-shaped seafloor environment formed by gravel and underwater rocks originating from the land of the Dongdo is up to about 15 m depth. And the boundary line of between extended bedrocks and seabottom is unclear in the southern nearshore of the Dongdo. On the other hand, the southern coast of the Seodo is characterized by relatively large scale underwater rocks and evenly distributed sediments, which clearly distinguish the boundary of between extended bedrocks and seafloor. This is because the tuff layers exposed to the coastal cliffs of the Dongdo are weak against weathering and erosion. It is considered that there are more influences of the clastic sediments carried from the land of the Dongdo compared with the Seodo. Particularly, the land of the Dongdo has been undergoing construction activities. And also a highly unstable ground such as faults, joints and cracks appears in the Dongdo. In previous study, there are dissimilar features of the massive tuff breccia formations of the Dongdo and the Seodo. These conditions are thought to have influenced the different seabed characteristics in the southern nearshore areas of the Dongdo and the Seodo.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

Development of Airborne Remote Sensing System for Monitoring Marine Meteorology (Sea Surface Wind and Temperature) (연안 해양기상(해상풍, 수온) 관측을 위한 항공기 원격탐사 시스템)

  • Kim, Duk-Jin;Cho, Yang-Ki;Kang, Ki-Mook;Kim, Jin-Woo;Kim, Seung-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Although space-borne satellites are useful in obtaining information all around the world, they cannot observe at a suitable time and place. In order to overcome these limitations, an airborne remote sensing system was developed in this study. It is composed of a SAR sensor and a thermal infrared sensor. Additionally GPS, IMU, and thermometer/hygrometer were attached to the plane for radiometric and geometric calibration. The brightness of SAR image varies depending on surface roughness, and capillary waves on the sea surface, which are easily generated by sea winds, induce the surface roughness. Thus, sea surface wind can be estimated using the relationship between quantified SAR backscattering coefficient and the sea surface wind. On the other hand, thermal infrared sensor is sensitive to measure object's temperature. Sea surface temperature is obtained from the thermal infrared sensor after correcting the atmospheric effects which are located between sea surface and the sensor. Using these two remote sensing sensors mounted on airplane, four test flights were carried out along the west coast of Korea. The obtained SAR and thermal infrared images have shown that these images were useful enough to monitor coastal environment and estimate marine meteorology data.