채널은 무선망에 있어서 한정된 주요 자원 중의 하나이다. 다양한 채널 관리 기법들이 제시되어 왔으며, 최근 들어 가드채널의 최적화 문제가 부각되고 있다. 본 논문에서는 신경망을 이용한 지능적인 채널 관리 기법을 제안한다. 신경망의 학습 데이터 생성과 성능분석을 위하여 SRN(Stochastic Reward Net) 채널 할당 모델이 개발된다. 제안된 기법에서 신경망은 지도학습 방법인 역전파 알고리즘을 이용하여 최적의 가드채널 값 g를 계산하도록 학습한다. 학습된 신경망을 이용하여 최적의 g를 계산하고, 이를 SRM모델에서 구해진 결과와 비교한다. 실험 결과는 신경망에서 구한 가드채널 수와 SRM모델로부터 구한 가드채널 수의 상대적 차이가 없음을 보여준다.
본 논문에서는 신경망의 초기 파라미터(가중치, 바이어스) 값을 최적화 시키는 GA-BP(Genetic Algorithm-Backpropagation Network) 혼합 알고리즘을 이용하여 얼굴을 인식하는 방법을 제안하였다. 입력 영상의 각 픽셀들을 신경망의 입력으로 사용하고 고정 소수점 실수값으로 이루어진 신경망의 초기 파리미터 값은 유전자 알고리즘의 개체로 사용하기 위해 비트 스트링으로 변환한다. 신경망의 오차가 최소가 되는 값을 적합도로 정의한 뒤 새롭게 정의된 적응적 재학습 연산자를 이용하여 이를 평가해 최적의 진환된 신경망을 구성한 뒤 얼굴을 인식하는 실험을 하였다. 실험 결과 학습 수렴 속도의 비교에서는 오류 역전과 알고리즘 단독으로 실행한 수렴 속도보다 제안된 알고리즘의 수렴 속도가 향상된 결과를 보였고 인식률에서 오류 역전과 알고리즘 단독으로 실행한 방법보다 2.9% 향상된 것으로 나타났다.
In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.
본 논문은 확률 펄스연산을 이용한 신경회로망이 on-Chip학습 알고리즘에 대해 기술하였다. 확률 펄스 연산은 임이의 펄스열에서 1과 0이 발생할 확률을 통해 표현된 수를 사용하여 계산하는 것을 일컫는다. 이러한 확률연산을 신경회로망에 적용하면 하드웨어 구현먼적을 줄일 수 있다는 것과 확률적인 특징으로 인해 지역 최소값으로부터 빠져 나와 광역 최적해에 도달할 수 있다는 장점을 갖고 있다. 또한 본 연구에서는 칩 냅에 학습할 수 있는 on-chip학습 알고리즘을 역전파 학습 알고리즘으로부터 유도하였다. 이렇게 유도된 알고리즘을 검증하기 위하여 비선형 패턴분리문제를 모의실험 하였다. 도한 활자체 및 필기체 숫자 인식에도 적용하여 좋은 결과를 얻었다.
역전도 알고리즘은 연관 기억장치, 음성 인식, 패턴인식, 로보틱스등 여러 응용 분야에 다양하게 사용되고 있다. 그러나 새로운 학습 패턴을 추가적으로 학습시키려면 이전에학습했던 모든 패턴과 추가되는 패턴을 갖고 처음부터 새로운 학습을 수행하여야 한다. 이는 패턴의 개수가 점차 늘어날수록 학습에 소요되는 시간이 기하 급수적으로 길어지는 결과를 초래하게 된다. 따라서 주기적으로 다량의 데이터를 추가로 학습을 할 경우에 이러한 점진적 학습은 반드시 해결해야 할 문제점으로 간주된다. 본 논문에서는 기존의 신경망 구조는 그대로 유지하면서 대표 패턴을 추출해 추가 학습을 수행하는 방법을 제안하고 제안된 기법의 효율성을 위해 기계 학습 분야의 벤치마크로 많이 사용되는 Monk's data와 Iris data에 적용해 보았다.
본 논문에서는 에러 역전파 알고리듬에 기반한 다층 퍼셉트론의 학습 속도를 개선하기 위해 선택적 주의 학습방식을 제안한다. 제안된 방식은 학습 과정에서 세 가지 선택적 주의 기준을 적용하여 학습 데이터베이스 내의 일부 데이터만을 입력 패턴으로 사용하거나 주어진 입력 패턴에 대해 신경회로망내의 특정 영역만 선택적으로 학습이 이루어지도록 한다. 이러한 선택적 주의 기준은 다층 퍼셉트론의 출력층에서 계산된 평균 자승 에러와 은닉층의 각 노드에서 획득된 클래스 의존적인 적합도(relevance)를 이용하여 설정된다. 학습 속도의 개선은 학습 반복 횟수 당 계산량을 줄임으로써 이루어진다. 본 논문에서는 고립 단어 인식시스템에서의 화자 적응 문제에 대해 제안한 선택적 주의 학습방법을 적용하여 그 유효성을 알아보았다. 실험 결과로부터 제안한 선택적 주의 기법이 학습 속도를 평균 60%이상 개선시킬 수 있음을 확인하였다
선박은 위급상황에 노출될 경우 육상의 교통수단에 비해 해양 환경이라는 제약성 때문에 그 위험성이 더 크다. 따라서 위험 요소를 사전에 발견하고 먼저 조치를 취하는 것이 매우 중요하다. 이 논문에서는 선박에 가해지는 위험 요소를 지속적으로 감시하고 상태를 파악할 수 있는 상태감시시스템을 제안하였으며 이를 위해 선박 내에 화재 센서 모듈, 기울기 센서와 비틀림 센서를 설치하여 선박의 안전 상황을 판가름하는 기초가 되는 센서 데이터를 수집하였다. 획득한 센서 데이터는 역전파 신경망을 설계하여 분석하였으며 분석된 데이터를 토대로 판단한 선박 상태 정보는 승무원의 개인 단말기로 송신되어 이동 상황에서도 선박의 상태를 실시간으로 점검할 수 있다. 상황인식 실험 결과 연출된 화재 상황에서 약 95%의 정확도를 보였고 선체의 충격 위험 요소에 대해서 약 89%의 정확도를 보였다.
검색엔진을 사용하는 이용자의 정보 즉 선호도에 따른 지속적인 피드백으로 검색 결과의 랭킹을 향상시켜 유연한 검색이 가능하게 하는 방법에는 학습된 인공 신경망을 이용한다. 인공 신경망 학습은 신경망이 여러 다른 검색어로 학습된 후 다른 사용자들이 과거에 실제 검색했던 결과를 좀 더 반영하기 위한 것이다. 가중치의 지속적인 변경을 위해서는 네트워크에서 역방향으로 움직이면서 가중치를 변경하는 역전파 알고리즘을 이용하여 학습한다. 그러나 이러한 학습은 초기에는 훈련데이터에 적합한 성능을 보이나 학습의 횟수가 증가할수록 점점 과대적합되는 것을 알 수 있다. 따라서 본 논문에서는 최적화해야 할 개체가 많을 때 강한 장점을 가지고 있는 유전자 알고리즘을 적용하여 검색어에 관련성이 높은 페이지들 유연하게 랭킹하기 위해 URL리스트를 개체로 랜덤으로 선택하여 학습하는 기법을 제안한다.
Journal of the Korean Data and Information Science Society
/
제24권1호
/
pp.13-22
/
2013
무선으로 응용 프로그램을 다운받아 실행하고 수많은 응용 프로그램들을 통신 접속이 없어도 실행이 가능하다는 점으로 인해 스마트폰 중독이 인터넷 중독보다 심각한 상태이지만 아직까지 스마트폰 중독과 관련된 연구가 부족한 상태이다. 한국정보화진흥원에서 개발한 스마트폰 중독 검사 척도인 S-척도는 문항수가 많아 응답자들이 진단 자체를 회피할 수도 있으며 인구통계학적 변인도 고려하지 않은 상태에서 체크한 문항들에 대한 총점만으로 중독여부를 진단하므로 정확하게 진단하는데 어려움이 있다. 따라서 본 논문에서는 인구통계학적 변인을 포함한 여러 문항들을 추가한 자료들을 대상으로 먼저 스마트폰 중독에 영향을 미치는 중요한 요인들을 추출해 보았다. 추출한 축소문항을 대상으로 데이터마이닝기법 중 하나인 신경망을 이용하여 분류를 하였다. 신경망 학습알고리즘 중에서 BP학습 알고리즘과 다중 SVM을 이용하여 학습을 시켜 비교, 분석 해 본 결과 다중 SVM의 학습율이 조금 더 높게 나타났다. 본 논문에서 제안한 다중 SVM을 이용하여 학습을 한 자가진단 시스템을 이용하면 자료들의 급격한 변화에 대해 뛰어난 적응성을 가지므로 빠른 시간 내에 자신의 중독여부를 정확하게 자가진단 할 수 있다.
전력계통분야의 복합 대형화에 유연한 대처와 전력조류의 최적화 도모를 위해 사용되는 FACTS(Flexible AC Transmission System)기기 중 가장 유용한 UPFC(Unified Power Flow Controller)는 선로의 전압을 임의의 크기와 위상을 갖도록 제어하여 선로로 전송되는 유ㆍ무효전력을 총체적으로 보상하는 기능을 갖는다. 이런 UPEC가 계통에 연계되어 운영된다면 송전선로 매개변수가 변하기 때문에 계통의 영향을 많이 받는 거리계전기는 불필요한 오동작이 발생하게 된다. 즉 거리계전기에서 바라본 임피던스 영역(Impedance Zone)이 송전선로에 UPFC 연계시 각각의 보상 값에 의해 상당한 변화를 보임으로, 기존의 방식으로 정정된 Relay Setting Zone과 Adaptive Setting Zone은 현저한 오차가 발생하게 된다. 그러므로 계통에 연계된 UPFC의 운전 조건을 고려한 거리계전기 보호구간의 재설정이 필요하게 된다. 따라서 본 논문의 목적은 학습이 가능한 신경회로망(ANN)을 이용하여 거리계전기 동작의 신속성(Speed)을 기본으로 전력계통의 다양한 환경에 대해 거리계전기 응동 특성을 향상시키는데 있다. 학습 방법으로는 정적 및 동적인 비선형 시스템의 인식과 다변수 시스템에 적용 가능한 역전파 알고리즘(Back-propagation Algorithm)을 사용했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.