• Title/Summary/Keyword: Backpropagation Algorithm

Search Result 351, Processing Time 0.032 seconds

Design and Implementation of the Quality Performance Improvement for Process System Using Neural Network (가공시스템에서 신경회로망을 이용한 품질의 성능 개선에 관한 설계 및 구현)

  • 문희근;김영탁;김수정;김관형;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.179-182
    • /
    • 2002
  • In this paper, this system makes use of the analog sensor and converts the feature of fish analog signal when sensor is operating with CPU(80C196KC). Then, After signal processing, this feature Is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error backpropagation is used as a learning algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long time when random initial weights are used, off-line learning Is induced to decrease the Progress time We confirmed this method has better performance than somewhat outdated machines.

A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm (개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교)

  • Yoon, Yeo-Chang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

The Optimal Bidding Strategy based on Error Backpropagation Algorithm in a Two-Way Bidding Pool Applying Cournot Model (쿠르노 모형을 적용한 양방향입찰 풀시장에서 오차 역전파 알고리즘을 이용한 최적 입찰전략수립)

  • Kwon, Byeong-Gook;Lee, Seung-Chul;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.475-478
    • /
    • 2003
  • 본 논문에서는 쿠르노 모형을 적용한 양방향입찰 전력 풀시장에서 입찰에 참여하는 발전기가 최대 이익을 얻기 위한 입찰전략으로서 신경회로망의 오차 역전파 알고리즘을 이용하여 최적 입찰발전량과 입찰가격을 수립하는 기법에 관하여 연구한다. 전력시장 환경은 n 개의 발전기들이 참여하는 비협조적 불완전정보 시장으로 설정하고 Bayesian의 조건부 확률이론을 적용하여 상대 발전기들의 발전비용함수와 시장의 수요함수를 추정하여 발전기 상호간 쿠르노-내쉬균형점을 이루는 최적 입찰발전량을 예측한다. 그리고 이익을 극대화시키기 위해 오차 역전파 알고리즘을 이용하여 시장의 가격 탄력성과 쿠르노 시장균형가격에 연결가중치를 조절함으로써 입찰가격이 계통한계가격에 근접하도록 최적 입찰전략을 수립한다.

  • PDF

A Study on Feedback Control and Development of chaotic Analysis Simulator for Chaotic Nonlinear Dynamic Systems (Chaotic 비선형 동역학 시스템의 Chaotic 현상 분석 시뮬레이터의 개발과 궤환제어에 관한 연구)

  • Kim, Jeong-D.;Jung, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.407-410
    • /
    • 1996
  • In this Paper, we propose the feedback method having neural network to control the chaotic signals to periodic signals. This controller has very simple structure, it is immune to small parameter variations, the precise access to system parameters is not required and it is possible to follow ones of its inherent periodic orbits or the desired orbits without error, The controller consist of linear feedback gain and neural network. The learning of neural network is achieved by error-backpropagation algorithm. To prove and analyze the proposed method, we construct a software tool using c-language.

  • PDF

Design of an Adaptive Control System using Neural Network (신경 회로망을 이용한 적응 제어 시스템의 설계)

  • Jang, Tae-In;Rhee, Hyung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.231-234
    • /
    • 1993
  • This paper deals with the design of an adaptive controller using neural network. We present RBFMLP Neural Network which consists of serial-connected two networks - Radial Basis Function Network and Multi Layer Perceptron, and then design a controller based on proposed networks with the adaptive control system structure, The plant and parameters of the controller are identified by the neural networks. We use the dynamic backpropagation algorithm for the learning of networks. Simulations represent the superiorities of the proposed network and the controller.

  • PDF

An Adaptive Autopilot for Course-keeping and Track-keeping Control of Ships using Adaptive Neural Network (Part II: Simulation study)

  • NGUYEN Phung-Hung;JUNG Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.23-28
    • /
    • 2005
  • In Part I (theoretical study) of the paper, a new adaptive autopilot for ships based on Adaptive Neural Networks was proposed. The ANNAI autopilot was designed for course-keeping, turning and track-keeping control for ships. In this part of the paper, to show the effectiveness and feasibility of the ANNAI autopilot, computer simulations of course-keeping and track-keeping tasks with and without the effects of measurement noise and external disturbances are presented. Additionally, the results of the previous studies using Adaptive Neural Network by backpropagation algorithm are also showed for comparison.

  • PDF

Recursive Least Square Backpropagation Neural Network Algorithm for Rejection of Multi-path Fading Interference in DS/CDMA Communication Systems (DS/CDMA통신에서 다경로 페이딩 간섭 제거를 위한 반복적 최소 자승 역전파 신경망 알고리즘)

  • Kim, Gwang-Jun;Na, Sang-Dong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.4
    • /
    • pp.464-471
    • /
    • 1999
  • DS/CDMA 시스템은 이동통신 시스템에서 다중경로, 고의적인 반방해 전파 및 동일대역폭을 공유하기 위한 다중 사용자에 의해 발생되는 협대역 간섭과 부가적인 백색가우시안 잡음을 제거한다. 본 논문에서는 다계층 퍼셉트론을 기반으로 한 역전파 신경망을 이용한 정합필터 채널 모델이 DS/CDMA 이동 통신 시스템에서 직접 순차 확산 스펙트럼의 협대역 간섭을 고려하면서 신호 대 잡음비와 전송 전력비에 따른 컴퓨터시뮬레이션 결과는 역전파 신경망을 이용한 정합 필터의 비트 에러율이 직접 순차 확산 스펙트럼의 RAKE 수신기의 비트 에러 율보다 적음을 입증하였다.

Dynamic Neural Units and Genetic Algorithms With Applications to the Optimal Control of Nonlinear Systems (신경망과 유전 알고리즘을 사용한 비선형 시스템의 최적 제어)

  • Cho Hyeon-Seob;Min Jin-Kyoung;Lee Hyung-Chung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • 'Dynamic Neural Unit'(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised loaming algorithms, such as the backpropagation (BP) algorithm, that needs training information In each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

A Learning Strategy for Neural Networks based on Evolutionary Algorithm (진화 알고리즘에 근거한 신경회로망 학습법)

  • Mun, K.J.;Hwang, G.H.;Yang, S.O.;Lee, H.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.408-410
    • /
    • 1994
  • This Paper Presents a learning strategy for neural networks based on genetic algorithms and evolution strategies. Genetic algorithms and evolution strategies are used to train weights of feedforward neural network to solve problems faster than neural network, especially backpropagation. Simulations are performed exclusive-OR problem, full-adder problem, sine function generator to demonstrate the effectiveness of neural-GA-ES.

  • PDF

Uncertainty-Compensating Neural Network Control for Nonlinear Systems (비선형 시스템의 불확실성을 보상하는 신경회로망 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.152-156
    • /
    • 2008
  • We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF