• Title/Summary/Keyword: Backpropagation Algorithm

Search Result 351, Processing Time 0.034 seconds

Efficient Learning Algorithm using Structural Hybrid of Multilayer Neural Networks and Gaussian Potential Function Networks (다층 신경회로망과 가우시안 포텐샬 함수 네트워크의 구조적 결합을 이용한 효율적인 학습 방법)

  • 박상봉;박래정;박철훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2418-2425
    • /
    • 1994
  • Although the error backpropagation(EBP) algorithm based on the gradient descent method is a widely-used learning algorithm of neural networks, learning sometimes takes a long time to acquire accuracy. This paper develops a novel learning method to alleviate the problems of EBP algorithm such as local minima, slow speed, and size of structure and thus to improve performance by adopting other new networks. Gaussian Potential Function networks(GPFN), in parallel with multilayer neural networks. Empirical simulations show the efficacy of the proposed algorithm in function approximation, which enables us to train networks faster with the better generalization capabilities.

  • PDF

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

A Neural Network Based on Stochastic Computation using the Ratio of the Number of Ones and Zeros in the Pulse Stream (펄스열에서 1인 펄스수와 0인 펄스수의 비를 이용하여 확률연산을 하는 신경회로망)

  • 민승재;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.211-218
    • /
    • 1994
  • Stochastic computation employs random pulse streams to represent numbers. In this paper, we study a new method to implement the number system which uses the ratio of the numbers of ones and zeros in the pulse streams. In this number system. if P is the probability that a pulse is one in a pulse stream then the number X represented by the pulse stream is defined as P/(1-P). We propose circuits to implement the basic operations such as addition multiplication and sigmoid function with this number system and examine the error characteristics of such operations in stochastic computation. We also propose a neuron model and derive a learning algorithm based on backpropagation for the 3-layered feedforward neural networks. We apply this learning algorithm to a digit recognition problem. To analyze the results, we discuss the errors due to the variance of the random pulse streams and the quantization noise of finite length register.

  • PDF

Design of Self Recurrent Neuro-Fuzzy Controller for Stabilization of Nonlinear System (비선형 시스템의 안정화를 위한 자기순환 뉴로-퍼지 제어기의 설계)

  • Tak, Han-Ho;Lee, In-Yong;Lee, Seong-Hyeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.390-393
    • /
    • 2007
  • In this paper, applications of self recurrent neuro-fuzzy controller to stabilization of nonlinear system are considered. The architecture of self recurrent neuro-fuzzy controller is fix layer, and the hidden layer is comprised of self recurrent architecture. Also, generalized dynamic error-backpropagation algorithm is used for the learning of the self recurrent neuro-fuzzy controller. To demonstrate the efficiency of the self recurrent neuro-fuzzy control algorithm presented in this study, a self recurrent neuro-fuzzy controller was designed and then a comparative analysis was made with LQR controller through an simulation.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems (동적 신경망과 Geneo-tic Algorithms를 적용한 비선형 시스템의 제어)

  • Cho, Hyun-Seob;Min, Jin-Kyoung;Roh, Yong-Gi;Jung, Byung-Jo;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1943-1944
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin

  • PDF

Robust control of Nonlinear System Using Multilayer Neural Network (다층 신경회로망을 이용한 비선형 시스템의 견실한 제어)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.243-248
    • /
    • 2013
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

A study on Performance Improvement of Neural Networks Using Genetic algorithms (유전자 알고리즘을 이용한 신경 회로망 성능향상에 관한 연구)

  • Lim, Jung-Eun;Kim, Hae-Jin;Chang, Byung-Chan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2075-2076
    • /
    • 2006
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Backpropagation(BP). The conventional BP does not guarantee that the BP generated through learning has the optimal network architecture. But the proposed GA-based BP enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional BP. The experimental results in BP neural network optimization show that this algorithm can effectively avoid BP network converging to local optimum. It is found by comparison that the improved genetic algorithm can almost avoid the trap of local optimum and effectively improve the convergent speed.

  • PDF

Control of a cart system using genetic algorithm

  • Kim, Sung-Soo;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.385-389
    • /
    • 1994
  • So far many researches have studied to control a cart system with a pole on the top of itself (forwards we call it simply a cart system) which is movable only to the directions to which a cart moves, using neural networks and genetic algorithms. Especially which it wag solved by genetic algorithms, it was possible to control a cart system more robustly than ordinary methods using neural networks but it had problems too, i.e., the control time to be achieved was short and the processing time for it was long. However we could control a cart system using standard genetic algorithm longer than ordinary neural network methods (for example error backpropagation) and could see that robust control was possible. Computer simulation was performed through the personal computer and the results showed the possibility of real time control because the cpu time which was occupied by processes was relatively short.

  • PDF