• Title/Summary/Keyword: Background temperature difference

Search Result 129, Processing Time 0.023 seconds

Climate Change and Rice Yield in Hwaseong-si Gyeonggi-do over the Past 20 Years (2001~2020) (경기도 화성시 20년간(2001~2020) 기후변화와 벼 수량 변화)

  • Ju, Ok-Jung;Choi, Byoung-Rourl;Jang, Eun Kyu;Soh, Hoseup;Lee, Sang-Woo;Lee, Young-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.16-23
    • /
    • 2022
  • BACKGROUND: Rice production by the current standard cultivation method is predicted to decrease due to global warming. It seems that there has been a strong warming trend in Hwaseong-si, Gyeonggi-do. This study attempted to understand the climate change in Hwaseongsi, Gyeonggi-do and to analyze the effect of climate change on rice production. METHODS AND RESULTS: The statistical and physicochemical analyses were performed using the rice cultivar 'Chucheongbyeo' yields grown at the rice paddy field plot in the Gyeonggi-do Agricultural Research and Extension Services and the weather data measured in near the rice paddy plot. CONCLUSION(S): There was no significant difference between the average rice yields per area in 2000s (2001~2010) and 2010s (2011~2020), but the rice yield variability was greater in 2010s than in 2000s. The mean, minimum, maximum temperature, and the sunshine hours were evaluated for the correlation with the rice yield. The understanding of climate change in Hwaseong-si, Gyeonggi-do and the major weather factors affecting changes in rice yield, presented in this study, would enhance scientific understanding of regional climate change, and improve rice cultivation management.

Comparison of terrestrial insect communities associated with the crabgrass (Digitaria ciliaris) community, Korea

  • Jeong Ho Hwang;Jong-Hak Yun
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.250-260
    • /
    • 2023
  • Background: Crabgrass (Digitaria ciliaris, Poaceae) is a globally distributed weed, including in Afro-Eurasia, America, and Australia. As a highly gregarious plant, crabgrass is an important habitat for a diverse array of insects, and a potential habitat for agricultural pests. To compare the insect communities associated with the crabgrass community, insects were sampled using sweep sampling (100 sweeps per sample) at five sites, including Daejeon (Daejeon and Gap rivers), Anseong, Namhae, and Inje, with a focus on the Daejeon River. Results: A total of 5,888 individual insects belonging to eight orders, 42 families, and 115 species were collected from the five sites. Both the number of species and individuals of Hemiptera were the highest at all of the sites. In the present study, 73% of the insect population fed on D. ciliaris as a host plant. The dominant species in the D. ciliaris community was Laodelphax striatellus (Delphacidae), being ubiquitous at all the sites which showed a high abundance of rice pests in the communities and the suitability of D. ciliaris as an alternative host plant for them. The Shannon-Wiener diversity index was highest in Inje on 17 September (2.88), and the Chao1-bc diversity index was highest in the Gap River on 5 September (80). The sampling efficiency of 100 sweep samples (sample coverage) was calculated to be as high as 90%. The results of the samples taken from September to November in the Daejeon River showed that the number of species and individuals decreased gradually over time, and the number of dominant species decreased sharply between September and October. Similarity analysis indicated that sampling dates that were closer together yielded sampled assemblages with higher faunal similarity. In addition, in each sampling, the difference in the minimum temperature during the two-week period prior to sampling and faunal similarities were negatively correlated. Conclusions: This study provides foundational data that could enhance our understanding of insect diversity in D. ciliaris. The data can facilitate ecological conservation and management of Korean grasslands generally, as well as identification of potential pests that may disperse from D. ciliaris communities to nearby farmland.

Synthesis Characterization and Biodistribution of $^{99m}Tc$-Ethyl-3-Isocyanobutyrate as a New Myocardial Perfusion Agent (새로운 심관관류 영상 화합물로서 $^{99m}Tc$-Ethyl-3-Isocyano-butyrate의 합성, 표지 및 체내동태에 대한 연구)

  • Lee, Myung-Chul;Cho, Jung-Hyuck;Lee, Dong-Soo;Lim, Sang-Moo;Oh, Seung-Joon;Chung, Soo-Wook;Lee, Kyung-Han;Jeong, Jae-Min;Chung, June-Key;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 1993
  • Technetium labeled isonitrile analogues are widely used as myocardial perfusion imaging agents. We synthesized and characterized a new isonitrile compound, ethyl 3-isocyanobutyrate(EIB). Proton and $^{13}C$ NMR spectroscopy and thin layer chromatography with a $C_{18}$ coat was performed. EIB was easily labeled with $^{99m}TcO_4^-$- with sodium dithionite. The labeling efficiency measured by RP-HPLC was over 95%. The labeled product was stable with dilution in normal saline and with prolonged incubation at room temperature. There was no formation of secondary products or free $^{99m}TcO_4^-$. In vivo kinetics study of $^{99m}Tc$ (I) labeled EIB in rabbits showed adequate myocardial uptake, good contrast against lung background, and relatively rapid liver clearance. The heart to lung ratio was over 2.5 and the heart to liver ratio was approximately from 0.4 to 5 at 60 minutes post injection. Hepatic clearance of $^{99m}Tc-MIBI$ was faster ($t_{1/2}$=6 minutes) than that of $^{99m}Tc-MIBI$. In vivo kinetics observed in dog was similar to that in rabbit but there was faster gallbladder filling, and thus lower liver background. SPECT imaging of the canine myocardium showed favorable imaging characteristics. However, biodistribution in mice demonstrated a myocardial % injected dose/organ of less than 0.1%. This was thought to be due to interspecies difference in plasma esterase activity. In human plasma, $^{99m}Tc$ ( I ) labeled EIB was stable for at least 2 hours, without production of secondary products by HPLC. We conclude that ethyl 3-isocyanobutyrate may be a potential new myocardial perfusion imaging agent and deserves further investigation as to its usefulness for clinical use.

  • PDF

Comparison of the Real-time Measurements for PM2.5 and Quality Control Method (PM2.5 자동측정장비 비교 및 정도관리 방안)

  • Park, Mikyung;Park, Jin Su;Jo, Mira;Lee, Yong Hwan;Kim, Hyun Jae;Oh, Jun;Choi, Jin Soo;Ahn, Joon Young;Hong, You Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.616-625
    • /
    • 2017
  • Measurements using five real-time particle samplers were compared to measurements using three NRM (National Reference Method system) filter-based samplers(Gravimetric method) at Incheon, Korea, between May and August, 2014. The purpose of this study was to suggest the quality assurance/quality control (QA/QC) method of each instrument for use in a real-time continuous particle sampler to measure the mass of airborne particles with an aerodynamic diameter less than $2.5{\mu}m$ ($PM_{2.5}$). Five real-time particle samplers of BAM1020, FH62C_14, TEOM, PM-711 and SPM-613 were evaluated by comparing its measured 23 hr average $PM_{2.5}$ concentrations with those measured with NRM filter-based samplers simultaneously. The parameters(e.g. Inlet heating condition, Slope factor, Film response, Intercept, Background, Span value) of the real-time samplers were optimized respectively by conducting test performance evaluation during 7 days in field sampling. For example, inlet heating temperature of TEOM sampler controls $35{\sim}40^{\circ}C$ to minimize the fluctuation of the real-time measurement data and background value of BAM1020 is the key factor affecting the accuracy of $PM_{2.5}$ mass concentration. We classified the $PM_{2.5}$ concentration according to relative humidity (80%) to identify water absorbed in aerosols by measuring the ${\beta}$-ray samplers(BAM1020, FH62C_14) and TEOM. ${\beta}$-ray samplers were not strongly affected by relative humidity that the difference of the average $PM_{2.5}$ concentration was about 5%. On the other hand, The TEOM sampler overestimated $PM_{2.5}$ mass concentration about 15% at low relative humidity (<80%).

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

Effect of Work Intensity on Fit Factor and Affecive Quality of Dustproof Mask (작업 강도가 방진 마스크의 밀착도와 감성품질에 미치는 영향)

  • Lee, Jinsil;Cho, Sunhee;Yun, Jungmin;Kim, Min-Sun;Park, Jaekyu;Choe, Jaeho
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.301-310
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the effect of work intensity on fit factor and affective quality of the dustproof Background: Among the victims who suffer pneumoconiosis due to the inhalation of toxic substances or the lack of oxygen during the work, the proportion of the victims is larger than the other causes. Wearing a respirator may prevent pneumoconiosis, but it can be hazardous to workers because of the leakage through filters, cartridges, exhaust valves, broken parts, and face-to-face contact. Despite leakage through the contact area between the mask and the face has various causes such as the wearer's activity, sweat accumulation, facial shape, etc., There is a lack of relevant research and regulation compared to developed countries that have already institutionalized the law 30 years ago and give the right to sell through a test Method: The work intensity was adjusted by walking or running at 6km/h and 11km/h on the treadmill, and tasks were defined with reference to the test procedure and the exercise sequence applied in the face leakage test of the dustproof mask. And fit factor was measured objectively using 'Respirator Fit Tester 8038' which measures fit factor calculated by dividing the number of dust present outside the mask by inside the mask. In addition, affective quality was classified by the ease of use, ease of breathing, and ease of wearing, and was measured using the 5-point likert scale questionnaire. Results: There was a significant difference in fit factor, ease of breathing, and wearing convenience according to work intensity and no significant difference in ease of use(${\alpha}=0.01$). And when the work intensity was high, fit factor, ease of breathing, and wearing convenience were all lower than when the work intensity was low. Conclusion: In Korea, it is necessary to consider consideration of the work intensity when testing the leakage rate of the face part for safety certification of the respiratory protective equipment, When developing a mask, it should be possible to maintain high adhesion even under intense, active situation and high temperature conditions by selecting materials, improving the wearing style, and expanding the adjustable range.

Effect of rainfall events on soil carbon flux in mountain pastures

  • Jeong, Seok-Hee;Eom, Ji-Young;Lee, Jae-ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.302-309
    • /
    • 2017
  • Background: Large-scale land-use change is being caused by various socioeconomic problems. Land-use change is necessarily accompanied by changes in the regional carbon balance in terrestrial ecosystems and affects climate change. Therefore, it is crucial to understand the correlation between environmental factors altered by land-use change and the carbon balance. To address this issue, we studied the characteristics of soil carbon flux and soil moisture content related to rainfall events in mountain pastures converted from deciduous forest in Korea. Results: The average soil moisture contents (SMC) during the study period were 23.1% in the soil respiration (SR) plot and 25.2% in the heterotrophic respiration (HR) plot. The average SMC was increased to 2.1 and 1.1% in the SR and HR plots after rainfall events, respectively. In addition, saturated water content was 29.36% in this grassland. The soil water content was saturated under the consistent rainfall of more than $5mm\;h^{-1}$ rather than short-term heavy rainfall event. The average SR was increased to 28.4% after a rainfall event, but the average HR was decreased to 70. 1%. The correlation between soil carbon flux rates and rainfall was lower than other environmental factors. The correlation between SMC and soil carbon flux rates was low. However, HR exhibited a tendency to be decreased when SMC was 24.5%. In addition, the correlation between soil temperature and respiration rate was significant. Conclusions: In a mountain pasture ecosystem, rainfall induced the important change of soil moisture content related to respiration in soil. SR and HR were very sensitive to change of SMC in soil surface layer about 0-10-cm depth. SR was increased by elevation of SMC due to a rainfall event, and the result was assumed from maintaining moderate soil moisture content for respiration in microorganism and plant root. However, HR was decreased in long-time saturated condition of soil moisture content. Root has obviously contributed to high respiration in heavy rainfall, but it was affected to quick depression in respiration under low rainfall. The difference of SMC due to rainfall event was causative of a highly fluctuated soil respiration rate in the same soil temperature condition. Therefore, rainfall factor or SMC are to be considered in predicting the soil carbon flux of grassland ecosystems for future climate change.

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

Germination and seedling growth of closely related native and invasive legume trees in Nepal

  • Anuj Dangol;Ashmita Shrestha;Hemanti Airi;Nisha Kharel;Lal Bahadur Thapa;Anjana Devkota;Bharat Babu Shrestha
    • Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.296-307
    • /
    • 2024
  • Background: This study compares seed germination and seedling growth parameters of native Senegalia catechu with its closely related invasive Leucaena leucocephala in Nepal. For the comparison of seed germination percentage (GP), mean germination time (MGT), and Timson's index (TI), the seeds of both species were incubated under different light (photoperiod and dark), temperatures (30/20℃ and 25/15℃) and water stress conditions (-0.1, -0.25, -0.5, -0.75, and -1 MPa). The seedling emergence from different soil depths was also evaluated. The relative growth rate (RGR), root mass fraction (RMF), stem mass fraction, leaf mass fraction (LMF), and root-to-shoot ratio (RSR) of seedlings were also measured. Results: The seed length and mass of invasive L. leucocephala were higher than that of native S. catechu. The GP of S. catechu was higher at high temperature and photoperiod comparing to L. leucocephala. There was no difference in GP between two species under other light and temperature conditions. The MGT of S. catechu was shorter than that of L. leucocephala at both temperatures. Senegalia catechu exhibited higher TI than L. leucocephala, particularly at high temperatures. Water stress above -0.5 MPa reduced the GP and TI of both species and it was more pronounced in S. catechu than L. leucocephala. The seedling emergence percentage of L. leucocephala was higher than that of S. catechu. Both species exhibited comparable RGR and biomass allocations (RMF, LMF, and RSR). However, L. leucocephala had always greater values of shoot height, root length, leaf number and seedling biomass compared to S. catechu. Conclusions: Larger seeds may not always lead to higher seed GP. Some, but not all, seed germination and seedling growth traits can be useful to characterize invasive alien plant species. Invasiveness of L. leucocephala could be attributed to relatively high tolerance of seed germination to water stress, capacity to germinate from deeper soil, and larger seedling size compared to the confamilial native species.

Relation between Changes of DITI and Clinical Results according to the Level and Extent of Sympathicotomy in Essential Hyperhidrosis (본태성다한증에서 흉부교감신경의 차단 범위와 부위에 따른 임상결과와 체열변화 사이의 관계)

  • 최순호;임영혁;이삼윤;최종범
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.64-71
    • /
    • 2004
  • Background: Video-assisted sympathicotomy is a safe and effective method for the treatment of essential hyperhidrosis with immediate symptomatic improvement. However, this is offset by the occurrence of a high rate of side-effects, such as embarrassing compensatory hyperhidrosis. Therefore, by comparing and assessing the relationship between temperature change measured by DITI (digital infrared thermographic imaging) and clinical results according to the level and extent of sympathicotomy in essential hyperhidrosis. we tried to obtain a more precisely and objectively, the distribution and degree of compensatory sweating by DITI and also for ascertaining the clinical usefulness. Material and Method: From January 2000 to June 2002, the thoracoscopic sympathicotomy was performed in 28 patients suffering from essential hyperhidrosis in Dept. of Thoracic and Cardiovascular Surgery, Wonkwang University Hospital. The patients were divided into four groups, Group I: patients having undergone T2 sympathicotomy, Group II: patients having undergone T3 sympathicotomy, Group III: patients having undergone T3,4 sympathicotomy, and Group IV: patients having undergone T2,3,4 sympathicotomy. The parameters were composed of the satisfaction rate of treatment, the degree of compensatory and plantar sweating, and temperature changes of entire body measured by DITI Result: There was no difference in age and follow-up period among the groups. All of the treated patients obtained satisfactory alleviation of essential hyperhidrosis in immediate postoperative period. However, the rate of long-term satisfaction were 85.8%, 85.8%, 42.9%, and 28.6% in group I, II, III, and IV (p<0.05). More than embarrassing compensatory sweating was present in 14.2%, 14.2%, 57.1%, 71.4% in group I, II, III, and IV (p<0.05) In regard to plantar sweating, decrease in sweating was expressed in each of four groups, but was not significant between groups. An apparent increase of temperature measured by DITI indicated sufficient denervation and predicted long-lasting relief of essential hyperhidrosis and also decrease in temperature of trunk and lower extremity by DITI had correlated well with postoperative satisfaction, and also postoperative compensatory sweating. Conclusion: We suggested that the incidence and degree of compensatory sweating was closely related to the site and the extent of thoracic sympathicotomy. Resection of the lower interganglionic neural fiber of the second thoracic sympathetic ganglion on the third rib is the most practical and minimally invasive treatment than other surgical methods. We were also to anticipated the distribution and degree of compensatory sweating by DITI precisely and objectively and for ascertaining the clinical usefulness.