• Title/Summary/Keyword: Background illumination

Search Result 190, Processing Time 0.036 seconds

A Simple Strategy in Avulsion Flap Injury: Prediction of Flap Viability Using Wood's Lamp Illumination and Resurfacing with a Full-thickness Skin Graft

  • Lim, Hyoseob;Han, Dae Hee;Lee, Il Jae;Park, Myong Chul
    • Archives of Plastic Surgery
    • /
    • v.41 no.2
    • /
    • pp.126-132
    • /
    • 2014
  • Background Extensive degloving injuries of the extremities usually result in necrosis of the flap, necessitating comprehensive skin grafting. Provided there is a sufficient tool to evaluate flap viability, full-thickness skin can be used from a nonviable avulsed flap. We used a Wood's lamp to determine the viability of avulsed flaps in the operation field after intravenous injection of fluorescein dye. Methods We experienced 13 cases during 16 months. Fifteen minutes after the intravenous injection of fluorescein dye, the avulsed skin flaps were examined and non-fluorescent areas were marked under Wood's lamp illumination. The marked area was defatted for full-thickness skin grafting. The fluorescent areas were sutured directly without tension. The non-fluorescent areas were covered by defatted skin. Several days later, there was soft tissue necrosis within the flap area. We measured necrotic area and revised the flap. Results Among all the cases, necrotic area was 21.3% of the total avulsed area. However, if we exclude three cases, one of a carelessly managed patient and two cases of the flaps were inappropriately applied, good results were obtained, with a necrotic area of only 8.4%. Eight patients needed split-thickness skin grafts, and heel pad reconstruction was performed with free flap. Conclusions A full-thickness skin graft from an avulsed flap is a good method for addressing aesthetic concerns without producing donor site morbidity. Fluorescein dye is a useful, simple, and cost-effective tool for evaluating flap viability. Avulsed flap injuries can be managed well with Wood's lamp illumination and a full-thickness skin graft.

An Analysis of Computerized Implementation of Film Colored Overlays Based on Optical Characteristics and User Preference (필름 색 오버레이의 광학적 특성과 사용자 선택을 반영한 컴퓨터 구현성 분석)

  • Jang, Young-Gun;Park, Chan-Khon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.223-232
    • /
    • 2014
  • The feasibility of a virtual colored overlay is based on constraints of computer and user preference and it is evaluated for people with Scotopic Sensitivity Syndrome. We draw ${\alpha}$ and chromaticities of virtual colored overlay which will be implemented on IT devices by measuring optical characteristics of 2 representative film overlays and simulating them. We analyzed the influence of two illuminating conditions on the virtual colored overlay. We find that it is possible to get the multiple combinations of alpha and source RGB values to match a chromaticity which is presented in CIE-Luv color space under ideal white condition of display, a user can select one among them with respect to clarity and comfort. Under 100 lx difference of illumination conditions, the changes of chromaticities are negligible, but luminances are increased $37.8cd/m^2$ average(std 2.006) at high illumination condition.

A Review of Aircraft Camouflage Techniques to Reduce Visual Detection (항공기 시각 탐지 감소 위장기술 고찰)

  • Jin, Wonjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.630-636
    • /
    • 2020
  • This study reviewed camouflage techniques to reduce the visual detect-ability of aircraft. Visual camouflage can be defined as the process of making objects less visible. Aircraft visual camouflage delays detection of the aircraft position, speed, and flight direction. Multi-tone and counter-shaded schemes are generally adopted as camouflage patterns for close-air-support aircraft and air-superiority aircraft, respectively. Another study showed that the monotone scheme is also efficient when the hue and brightness of the camouflage color are controlled correctly. Active camouflage techniques for aircraft have been studied to increase the camouflage effectiveness. In particular, counter-illumination techniques using electroluminescence devices can minimize the difference in brightness between the aircraft and sky background. Active camouflage techniques are expected to enhance the survivability of low-altitude UAVs, which are vulnerable to visual detection.

A study on Visualization and Enhancement the Latent Fingerprints on Multi-colored Surfaces using the Forensic Light Sources (법광원을 이용한 복잡한 배경의 잠재지문 시각화 및 증강에 관한 연구)

  • Cho, Hyeong-Woo;Koh, Hyun-Seo;Han, Sang-Gyoun;Yu, Je-Seol
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.72-80
    • /
    • 2016
  • There are various methods of developing latent fingerprints from evidence found at crime scenes. Crime scene investigators should choose appropriate techniques among them depending on the conditions of the evidences. In this study, we compared the three methods using forensic light sources to develop latent fingerprints on multi-colored surfaces. We selected the various samples according to color, shape and texture of the surfaces and developed the latent fingerprints using fluorescent powder, IR(Infrared) photography and Episcopic Co-axial Illumination. Fluorescent powder was highly effective on all surfaces. IR photography was also effective, but only on the not dark surfaces. Episcopic Co-axial Illumination was effective only on the flat and polished surfaces. Although fluorescent powder was fine regardless of the characteristics of the surfaces, IR photography was better on certain surfaces.

Region-growing based Hand Segmentation Algorithm using Skin Color and Depth Information (피부색 및 깊이정보를 이용한 영역채움 기반 손 분리 기법)

  • Seo, Jonghoon;Chae, Seungho;Shim, Jinwook;Kim, Hayoung;Han, Tack-Don
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1031-1043
    • /
    • 2013
  • Extracting hand region from images is the first part in the process to recognize hand posture and gesture interaction. Therefore, a good segmenting method is important because it determines the overall performance of hand recognition systems. Conventional hand segmentation researches were prone to changing illumination conditions or limited to the ability to detect multiple people. In this paper, we propose a robust technique based on the fusion of skin-color data and depth information for hand segmentation process. The proposed algorithm uses skin-color data to localize accurate seed location for region-growing from a complicated background. Based on the seed location, our algorithm adjusts each detected blob to fill up the hole region. A region-growing algorithm is applied to the adjusted blob boundary at the detected depth image to obtain a robust hand region against illumination effects. Also, the resulting hand region is used to train our skin-model adaptively which further reduces the effects of changing illumination. We conducted experiments to compare our results with conventional techniques which validates the robustness of the proposed algorithm and in addition we show our method works well even in a counter light condition.

Implementation of Real-time Recognition System for Korean Sign Language (한글 수화의 실시간 인식 시스템의 구현)

  • Han Young-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.85-93
    • /
    • 2005
  • In this paper, we propose recognition system which tracks the unmarked hand of a person performing sign language in complex background. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour and recognize sign language by applying improved centroidal profile method. In the experimental results for 6 kinds of sing language movement, unlike existing methods, we can stably recognize sign language in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and $90\sim100%$ for each movement at 15 frames/second.

  • PDF

Gesture Recognition System using Motion Information (움직임 정보를 이용한 제스처 인식 시스템)

  • Han, Young-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.473-478
    • /
    • 2003
  • In this paper, we propose the gesture recognition system using a motion information from extracted hand region in complex background image. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour using the chain code and recognize hand gesture by applying improved centroidal profile method. In the experimental results for 6 kinds of hand gesture, unlike existing methods, we can stably recognize hand gesture in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and 90∼100% for each gesture at 15 frames/second.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Robust Object Detection Algorithm Using Spatial Gradient Information (SG 정보를 이용한 강인한 물체 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.422-428
    • /
    • 2008
  • In this paper, we propose the robust object detection algorithm with spatial gradient information. To do this, first, we eliminate error values that appear due to complex environment and various illumination change by using prior methods based on hue and intensity from the input video and background. Visible shadows are eliminated from the foreground by using an RGB color model and a qualified RGB color model. And unnecessary values are eliminated by using the HSI color model. The background is removed completely from the foreground leaving a silhouette to be restored using spatial gradient and HSI color model. Finally, we validate the applicability of the proposed method using various indoor and outdoor conditions in a complex environments.

Background-noise Reduction for Fourier Ptychographic Microscopy Based on an Improved Thresholding Method

  • Hou, Lexin;Wang, Hexin;Wang, Junhua;Xu, Min
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2018
  • Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging method that achieves both high resolution (HR) and wide field of view. In the FPM framework, a series of low-resolution (LR) images at different illumination angles is used for high-resolution image reconstruction. On the basis of previous research, image noise can significantly degrade the FPM reconstruction result. Since the captured LR images contain a lot of dark-field images with low signal-to-noise ratio, it is very important to apply a noise-reduction process to the FPM raw dataset. However, the thresholding method commonly used for the FPM data preprocessing cannot separate signals from background noise effectively. In this work, we propose an improved thresholding method that provides a reliable background-noise threshold for noise reduction. Experimental results show that the proposed method is more efficient and robust than the conventional thresholding method.