• 제목/요약/키워드: Background extraction

검색결과 658건 처리시간 0.029초

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

텍스트-배경무늬 혼합문서로부터 수리형태학을 이용한 문자열 추출 (String extraction from text-background mixed documents using mathematical morphology)

  • 성연진;어진우
    • 전자공학회논문지S
    • /
    • 제34S권10호
    • /
    • pp.104-111
    • /
    • 1997
  • It is known as a difficult problem to recognize text-background mixed documents. In this paper a new string extraction algorithm, using mathematical morphology for the document consisting of text and overlapped periodic background pattern, is proposed. The algorithm consists of pattern periodicity feature extraction and background removal. The extracted pattern periodicity feature is used to determine the shape of structuring elements for morphological pre- and post-processing to remove background. The effectiveness of the proposed algorithm over the existing one is also verified through the experiments with various test documents.

  • PDF

벡터 미디언을 이용한 비디오 영상의 온라인 배경 추출 (On-line Background Extraction in Video Image Using Vector Median)

  • 김준철;박은종;이준환
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.515-524
    • /
    • 2006
  • 배경추출은 비디오 감시 시스템에서 움직이는 물체를 찾는데 중요한 기술이다. 본 논문에서는 벡터 정렬을 이용한 새로운 온라인 컬러 배경 추출 방법을 제안한다. 제안된 방법에서 배경은 물체보다 발생빈도가 높다는 사실을 이용하여, 연속된 프레임의 컬러화소 값들의 벡터 미디언을 그 화소에서의 배경이라 간주한다. 본 알고리즘에서 현재 프레임의 물체는 얻어진 배경과의 거리가 문턱치보다 큰 화소들의 집합으로 구성된다. 알고리즘의 성능을 평가하기 위하여 온라인 가우시안 혼합 모델(Gaussian Mixture Model)을 이용한 다중 배경추출 방법과 비교하였으며, 비교결과 유사 또는 우월한 실험 결과를 확인하였다.

핵심 객체 추출에 기반한 비주거 시설의 화재불꽃 추출에 관한 기초 연구 (A Basic Study on the Fire Flame Extraction of Non-Residential Facilities Based on Core Object Extraction)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.71-79
    • /
    • 2017
  • Recently, Fire watching and dangerous substances monitoring system has been being developed to enhance various fire related security. It is generally assumed that fire flame extraction plays a very important role on this monitoring system. In this study, we propose the fire flame extraction method of Non-Residential Facilities based on core object extraction in image. A core object is defined as a comparatively large object at center of the image. First of all, an input image and its decreased resolution image are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent to boundaries of the image and the rest is not. Then core object regions and core background regions are selected from the inner region and the outer region, respectively. Core object regions are the representative regions for the object and are selected by using the information about the region size and location. Each inner region is classified into foreground or background region by comparing its values of a color histogram intersection of the inner region against the core object region and the core background region. Finally, the extracted core object region is determined as fire flame object in the image. Through experiments, we find that to provide a basic measures can respond effectively and quickly to fire in non-residential facilities.

자동 배경 영상 추출 및 갱신 방법에 관한 연구 (A Study On Automatic Background Extraction and Updating Method)

  • 김덕래;하동문;김용득
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.35-38
    • /
    • 2003
  • In this paper, I propose an automatic background extraction method and continuous background updating technique. Because there is a movement of a vehicle and a change of a background is feeble, the area moving through the time axis is looked for and a background and a vehicle image is divided. A way to give dynamically the threshold which divides the image frame into a vehicle image and the background in a space is enforced. Through the repetition of the above-mentioned process, the background pictorial image is gained. Using the karlman filter technique, the update is done so that a background image can obey a climate situation and an environmental change in day and night. A background image processed algorithm is better than the existent one. Through simulation, the feasibility of the algorithm has been verified.

  • PDF

이중 회귀 신경 회로망을 이용한 수중 음향 신호의 토널 추출 기법 (Tonal Extraction Method for Underwater Acoustic Signal Using a Double-Feedback Neural Network)

  • 임태균;이상학
    • 한국정보통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.915-920
    • /
    • 2007
  • 수중 음향 탐지기를 통해서 수집한 표적 방사음의 스펙트럼은 음향 표적의 토널 성분과 대 양의 유체역학적 배경 잡음 성분들로 구성되어 있다. 음향 표적의 토널 성분은 주요 식별 정보가 되기 때문에 배경 잡음을 추정, 제거함으로써 표적의 토널 성분을 견실하게 추출할 수 있는 알고리즘이 요구된다. 따라서 본 논문에서는 배경 잡음을 제거하고, 미약한 크기의 표적 토널도 탐지 할 수 있는 이중 회귀 신경망을 이용한 토널 추출 방법을 제안한다. 실험을 통하여 본 논문에서 제안한 이중 회귀 신경망을 이용한 토널 추출 기법이 기존의 방법보다 토널 추출 성능이 우수함을 확인하였다.

연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘 (Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background)

  • 정재영
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권4호
    • /
    • pp.449-455
    • /
    • 2014
  • 이동 물체의 검출은 비디오 감시, 보행자의 행동 분석과 같은 컴퓨터 시각 분야에서 매우 중요한 전처리 작업이다. 이는 실제 외부 환경을 대상으로 할 때, 영상 시퀀스에 존재하는 배경의 불규칙한 움직임, 조명 변화, 그림자, 배경 물체의 위상 변화 및 잡음 등으로 인하여 매우 어려운 작업이다. 본 논문에서는 코드북 기반의 전경 검출 알고리즘을 제안한다. 코드북은 입력 영상으로부터 얻어지는 배경화소에 대한 정보 데이터베이스이다. 먼저, 첫 번째 프레임을 배경 영상으로 가정하고 이를 입력 영상과 비교하여 차 영상을 구한다. 구해진 차 영상에는 순수한 이동 물체뿐만 아니라, 잡음까지 포함된다. 둘째로, 전경으로 검출된 화소의 색상과 밝기 값을 가지고 코드북을 조사하여 존재하는 경우 잘못 추출된 전경 화소로 판단하고 전경에서 제거한다. 마지막으로, 다음번 입력되는 프레임을 반복 처리하기 위하여 배경 영상을 새롭게 갱신하는데, 배경 화소로 검출된 화소의 경우에는 현재의 입력 영상으로부터 추정되며, 전경 화소로 검출된 경우에는 이전 배경 영상의 화소 값을 복사하여 사용한다. 제안한 알고리즘을 PETS2009 데이터에 적용한 결과를 GMM 알고리즘과 표준 코드북 알고리즘의 결과와 비교하여 보인다.

모자이크 배경이미지 추출과 적응적 신경망을 이용한 다중 보행자 추적 시스템에 관한 연구 (A Study on Multiple Target Tracking Using Adaptive Neural Network and Mosaic Background Extraction)

  • 서창진;양황규
    • 한국정보통신학회논문지
    • /
    • 제7권8호
    • /
    • pp.1802-1808
    • /
    • 2003
  • 본 논문은 자동 보행자 추적 시스템에 필요한 배경 이미지를 추출하는 방법과 추출되어진 배경 이미지를 이용하여 보행자를 탐지하고 적응적 신경망을 이용하여 보행자의 이동 궤적을 추적하는 시스템을 구현하였다. 본 논문은 고스트(ghost) 현상을 극복하기 위하여 모자이크 배경 이미지 추출 법으로 배경 이미지를 추출하였으며, 보행자의 탐지에 차영상 분석법을 기반으로 하여 보행자를 탐지하였다. ART2 네트워크는 프레임에 존재하는 이동 물체의 중심점을 탐지할 수 있다. 그리고, 이전 프레임에서 탐지되어진 물체의 정보를 이용하여 물체의 이동궤적을 추적할 수 있다. 제안하는 방법으로 실험한 결과 비강체(non­rigid)형태 운동을 하는 보행자를 탐지하고 그 궤적 추적에 대한 실시간 시스템 구성의 가능성에 대하여 알 수 있었다.

복잡한 영상에서 적응적 에지검출을 이용한 텍스트 추출 알고리즘 연구 (Text Extraction Algorithm in Complex Images using Adaptive Edge detection)

  • 신성;김선동;백영현;문성룡
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.251-252
    • /
    • 2007
  • The thesis proposed the Text Extraction Algorithm which is a text extraction algorithm which uses the Coiflet Wavelet, YCbCr Color model and the close curve edge feature of adaptive LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of text and background color. This thesis is simulated with natural images which include naturally text area regardless of size, resolution and slant and so on of image. And the proposed algorithm is confirmed to an excellent by compared with an existing extraction algorithm in same image.

  • PDF