• 제목/요약/키워드: Background Speaker Model

검색결과 37건 처리시간 0.029초

GMM-UBM 기반 KL 거리를 활용한 화자변화 검증에 대한 연구 (The Study on the Verification of Speaker Change using GMM-UBM based KL distance)

  • 조준범;이지은;이경록
    • 중소기업융합학회논문지
    • /
    • 제6권4호
    • /
    • pp.71-77
    • /
    • 2016
  • 본 논문에서는 기존의 BIC(Bayesian Information Criterion) 기반 화자변화의 성능 향상을 위하여 GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리를 활용한 화자변화 검증을 제안하였다. 정보량의 차이에 민감한 기존의 BIC 기반 화자변화검출 알고리즘을 상대적으로 정보량 차이에 견인한 KL 거리 알고리즘으로 검증하였고, 정보량의 비대칭을 보상하기 위해서 GMM-UBM을 활용하였다. 기존의 BIC 기반 화자변화 검출은 1단계로 비유사도 d가 양수인 구간의 국소 최댓값인 지점을 화자변화 후보지점으로 검출하였고, 2단계로 검출된 화자변화 후보지점 중 ${\Delta}BIC$가 양수인 지점을 화자변화지점으로 결정하였다. 본 논문에서는 BIC 기반 화자변화 검출에 의해 결정된 화자변화지점에 대하여 GMM-UBM 기반 KL 거리 D가 문턱치(threshold)보다 높은 지점을 최종 화자변화 지점으로 검증하였다. 실험결과, MDR(Missed Detection Rate)이 0인 조건에서 문턱치 0.028일 때 FAR(False Alarm Rate) 60.4%로 성능이 향상되었다.

화자확인 시스템을 위한 분절 알고리즘 (A Blind Segmentation Algorithm for Speaker Verification System)

  • 김지운;김유진;민홍기;정재호
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.45-50
    • /
    • 2000
  • 본 논문에서는 하위단어에 기반한 전화선 채널에서의 어구 종속 화자 확인 시스템을 위한 음성 분할 알고리즘인, 파라미트릭 필터링에 기반한 델타 에너지를 제안한다. 제안한 알고리즘은 특정 밴드의 주파수를 기준으로 대역폭을 변화시키며 필터링한 후 델타 에너지를 이용하는 방법으로 다른 알고리즘에 비해 주변환경에 강인한 것으로 나타났다. 이를 이용해 음성을 하위단어로 분할하고, 각 하위단어를 이용해 화자의 성문을 모델링하였다. 제안한 알고리즘의 성능 평가를 위해 EER(Equal Error Rate)를 사용한다. 그 결과 단일 모델의 EER이 약 6.1%, 하위 단어 모델의 EER이 약 4.0%로 본 논문에서 제안한 알고리즘을 사용했을 때 약 2%의 성능이 향상되었다.

  • PDF

Voice Verification System for m-Commerce on CDMA Network

  • Kyung, Youn-Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권4E호
    • /
    • pp.176-182
    • /
    • 2003
  • As the needs for wireless Internet service is increasing, the needs for secure m-commerce is also increasing. Conventional security techniques are reinforced by biometric security technique. This paper utilized the voice as biometric security techniques. We developed speaker verification system for m-commerce (mobile commerce) via wireless internet and wireless application protocol (WAP). We named this system the mVprotek. We implemented the system as client-server architecture. The clients are mobile phone simulator and personal digital assistant (PDA). The verification results are obtained by integrating the mVprotek system with SK Telecom's code dimension multiple access (CDMA) system. Utilizing f-ratio weighting and virtual cohort model normalization showed much better performance than conventional background model normalization technique.

서브밴드 가중치를 이용한 잡음에 강인한 화자검증 (Noise Rabust Speaker Verification Using Sub-Band Weighting)

  • 김성탁;지미경;김회린
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.279-284
    • /
    • 2009
  • 화자검증은 발성화자가 제시화자 (claimed speaker)인지 아닌지를 구별하는 것이다. 기존의 화자검증 시스템인 GMM-UBM 방식의 화자검증 시스템은 무잡음 환경에서는 높은 검증성능을 보이지만, 잡음환경에서는 성능이 급격히 떨어지는 단점이 있다. 이런 단점을 극복하기 위해 멀티밴드를 이용한 방법인 특징벡터 재결합방법이 제안되었지만, 특징벡터 재결합방법은 전체 서브밴드 특징벡터들을 사용하여 유사도를 계산하는 단점이 있다. 이런 단점을 극복하기 위해 기 발표된 이전 논문에서 각 서브밴드 유사도를 독립적으로 계산하는 변형된 특징벡터 재결합방법을 제안하였고, 본 논문에서는 변형된 특징벡터 재결합방법과 각 서브밴드들의 신뢰도를 나타내는 신호 대 잡음비를 이용한 가중치를 이용하여 잡음환경에서 기존의 특징벡터 재결합방법에 비해 에러를 28% 감소시켰다.

BMS 알고리즘을 이용한 핵심어 검출기 거절기능 성능 향상 실험 (Improvement of Confidence Measure Performance in Keyword Spotting using Background Model Set Algorithm)

  • 김병돈;김진영;최승호
    • 대한음성학회지:말소리
    • /
    • 제46호
    • /
    • pp.103-115
    • /
    • 2003
  • In this paper, we proposed Background Model Set algorithm used in the speaker verification to improve calculating confidence measure(CM) in speech recognition. CM is to display relative likelihood between recognized models and antiphone models. In previous method calculating of CM, we calculated probability and standard deviation using all phonemes in composition of antiphone models. At this process, antiphone CM brought bad recognition result. Also, recognition time increases. In order to solve this problem, we studied about method to reconstitute average and standard deviation using BMS algorithm in CM calculation.

  • PDF

Voxceleb과 한국어를 결합한 새로운 데이터셋으로 학습된 ECAPA-TDNN을 활용한 화자 검증 (Speaker verification with ECAPA-TDNN trained on new dataset combined with Voxceleb and Korean)

  • 윤금재;박소영
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.209-224
    • /
    • 2024
  • 화자검증(speaker verification)이란 두개의 음성 데이터로부터 같은 화자의 목소리 인지 아닌지를 판단하는것을 말한다. 범죄현장에서 범인의 목소리만이 증거로 남는경우, 두개의 목소리를 객관적이고 정확하게 비교할 수 있는 화자 검증 시스템 또는 화자 매칭 시스템의 구축이 시급하다. 본 연구에서는 한국어에 대한 화자검증 딥러닝 모형을 새롭게 구축하고, 학습에 필요한 적절한 형태의 학습데이터셋에 대해 연구한다. 음성데이터는 고차원이면서 백그라운드 노이즈를 포함하는 등의 변동성이 큰 특징이 있다. 따라서 화자 검증 시스템을 구축하기위해 딥러닝 기반의 방법 선택하는경우가 많다. 본 연구에서는 ECAPA-TDNN 모형을 선택하여 화자 매칭 알고리즘을 구축하였다. 구축한 모형을 학습시키는데 사용한 Voxceleb은 대용량의 목소리 데이터로 다양한 국적을 가진 사람들로부터 음성데이터를 포함하지만 한국어에 대한 정보는 포함하지 않는 다. 본 연구에서는 한국어 음성데이터를 학습에 포함시켰을때와 포함시키지 않았을때 학습 데이터 내 해당언어의 존재 유무가 모델의 성능에 미치는 영향에 대해 파악하였다. Voxceleb으로만 학습한 모델과 언어와 화자의 다양성을 최대로 하기 위해 Voxceleb과 한국어 데이터셋을 결합한 데이터셋으로 학습한 모델을 비교하였을 때, 모든 테스트 셋에 대해 한국어를 포함한 학습데이터의 성능이 개선됨을 보인다.

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • 제11권1호
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.

화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델 (RPCA-GMM for Speaker Identification)

  • 이윤정;서창우;강상기;이기용
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.519-527
    • /
    • 2003
  • 음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.

SNR 기반 가중 KL 거리를 활용한 화자 변화 검증에 관한 연구 (The Study on Speaker Change Verification Using SNR based weighted KL distance)

  • 조준범;이지은;이경록
    • 융합정보논문지
    • /
    • 제7권6호
    • /
    • pp.159-166
    • /
    • 2017
  • 본 논문에서는 방송 뉴스에서 화자 변화 검증 성능 향상을 위해서 입력소음음성 향상과 SNR(Signal to Noise Ratio)기반 가중 함수 $w_m$를 적용한 KL 거리 $D_s$를 실험하였다. GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리 D를 이용한 화자 변화 검증 시스템(실험 0)을 기본 시스템으로 한다. 실험 1은 실험 0의 입력소음음성 향상을 위해 MMSE Log-STSA(Minimum Mean Square Error Log-Spectral Amplitude Estimator)를 적용하였다. 실험 2는 실험 1의 기존 KL거리 D 대신에 $D_s$를 적용하였다. 실험 데이터베이스는 다양한 소음을 반영하기 위해 스포츠 뉴스와 실외 인터뷰를 중심으로 구축하였다. 실험은 화자 변화 정보의 누락을 막기 위해 MDR(Missed Detection Rate) 0%를 기준으로 하였다. 실험 0은 FAR(False Alarm Rate) 71.5%의 성능을 보였다. 실험 1은 FAR 67.3%로 실험0에 비해 4.2% 향상되었고, 실험 2는 FAR 60.7%로 10.8% 향상되었다.

Korean Broadcast News Transcription Using Morpheme-based Recognition Units

  • Kwon, Oh-Wook;Alex Waibel
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권1E호
    • /
    • pp.3-11
    • /
    • 2002
  • Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.