본 논문에서는 기존의 BIC(Bayesian Information Criterion) 기반 화자변화의 성능 향상을 위하여 GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리를 활용한 화자변화 검증을 제안하였다. 정보량의 차이에 민감한 기존의 BIC 기반 화자변화검출 알고리즘을 상대적으로 정보량 차이에 견인한 KL 거리 알고리즘으로 검증하였고, 정보량의 비대칭을 보상하기 위해서 GMM-UBM을 활용하였다. 기존의 BIC 기반 화자변화 검출은 1단계로 비유사도 d가 양수인 구간의 국소 최댓값인 지점을 화자변화 후보지점으로 검출하였고, 2단계로 검출된 화자변화 후보지점 중 ${\Delta}BIC$가 양수인 지점을 화자변화지점으로 결정하였다. 본 논문에서는 BIC 기반 화자변화 검출에 의해 결정된 화자변화지점에 대하여 GMM-UBM 기반 KL 거리 D가 문턱치(threshold)보다 높은 지점을 최종 화자변화 지점으로 검증하였다. 실험결과, MDR(Missed Detection Rate)이 0인 조건에서 문턱치 0.028일 때 FAR(False Alarm Rate) 60.4%로 성능이 향상되었다.
본 논문에서는 하위단어에 기반한 전화선 채널에서의 어구 종속 화자 확인 시스템을 위한 음성 분할 알고리즘인, 파라미트릭 필터링에 기반한 델타 에너지를 제안한다. 제안한 알고리즘은 특정 밴드의 주파수를 기준으로 대역폭을 변화시키며 필터링한 후 델타 에너지를 이용하는 방법으로 다른 알고리즘에 비해 주변환경에 강인한 것으로 나타났다. 이를 이용해 음성을 하위단어로 분할하고, 각 하위단어를 이용해 화자의 성문을 모델링하였다. 제안한 알고리즘의 성능 평가를 위해 EER(Equal Error Rate)를 사용한다. 그 결과 단일 모델의 EER이 약 6.1%, 하위 단어 모델의 EER이 약 4.0%로 본 논문에서 제안한 알고리즘을 사용했을 때 약 2%의 성능이 향상되었다.
As the needs for wireless Internet service is increasing, the needs for secure m-commerce is also increasing. Conventional security techniques are reinforced by biometric security technique. This paper utilized the voice as biometric security techniques. We developed speaker verification system for m-commerce (mobile commerce) via wireless internet and wireless application protocol (WAP). We named this system the mVprotek. We implemented the system as client-server architecture. The clients are mobile phone simulator and personal digital assistant (PDA). The verification results are obtained by integrating the mVprotek system with SK Telecom's code dimension multiple access (CDMA) system. Utilizing f-ratio weighting and virtual cohort model normalization showed much better performance than conventional background model normalization technique.
화자검증은 발성화자가 제시화자 (claimed speaker)인지 아닌지를 구별하는 것이다. 기존의 화자검증 시스템인 GMM-UBM 방식의 화자검증 시스템은 무잡음 환경에서는 높은 검증성능을 보이지만, 잡음환경에서는 성능이 급격히 떨어지는 단점이 있다. 이런 단점을 극복하기 위해 멀티밴드를 이용한 방법인 특징벡터 재결합방법이 제안되었지만, 특징벡터 재결합방법은 전체 서브밴드 특징벡터들을 사용하여 유사도를 계산하는 단점이 있다. 이런 단점을 극복하기 위해 기 발표된 이전 논문에서 각 서브밴드 유사도를 독립적으로 계산하는 변형된 특징벡터 재결합방법을 제안하였고, 본 논문에서는 변형된 특징벡터 재결합방법과 각 서브밴드들의 신뢰도를 나타내는 신호 대 잡음비를 이용한 가중치를 이용하여 잡음환경에서 기존의 특징벡터 재결합방법에 비해 에러를 28% 감소시켰다.
In this paper, we proposed Background Model Set algorithm used in the speaker verification to improve calculating confidence measure(CM) in speech recognition. CM is to display relative likelihood between recognized models and antiphone models. In previous method calculating of CM, we calculated probability and standard deviation using all phonemes in composition of antiphone models. At this process, antiphone CM brought bad recognition result. Also, recognition time increases. In order to solve this problem, we studied about method to reconstitute average and standard deviation using BMS algorithm in CM calculation.
화자검증(speaker verification)이란 두개의 음성 데이터로부터 같은 화자의 목소리 인지 아닌지를 판단하는것을 말한다. 범죄현장에서 범인의 목소리만이 증거로 남는경우, 두개의 목소리를 객관적이고 정확하게 비교할 수 있는 화자 검증 시스템 또는 화자 매칭 시스템의 구축이 시급하다. 본 연구에서는 한국어에 대한 화자검증 딥러닝 모형을 새롭게 구축하고, 학습에 필요한 적절한 형태의 학습데이터셋에 대해 연구한다. 음성데이터는 고차원이면서 백그라운드 노이즈를 포함하는 등의 변동성이 큰 특징이 있다. 따라서 화자 검증 시스템을 구축하기위해 딥러닝 기반의 방법 선택하는경우가 많다. 본 연구에서는 ECAPA-TDNN 모형을 선택하여 화자 매칭 알고리즘을 구축하였다. 구축한 모형을 학습시키는데 사용한 Voxceleb은 대용량의 목소리 데이터로 다양한 국적을 가진 사람들로부터 음성데이터를 포함하지만 한국어에 대한 정보는 포함하지 않는 다. 본 연구에서는 한국어 음성데이터를 학습에 포함시켰을때와 포함시키지 않았을때 학습 데이터 내 해당언어의 존재 유무가 모델의 성능에 미치는 영향에 대해 파악하였다. Voxceleb으로만 학습한 모델과 언어와 화자의 다양성을 최대로 하기 위해 Voxceleb과 한국어 데이터셋을 결합한 데이터셋으로 학습한 모델을 비교하였을 때, 모든 테스트 셋에 대해 한국어를 포함한 학습데이터의 성능이 개선됨을 보인다.
While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.
음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.
본 논문에서는 방송 뉴스에서 화자 변화 검증 성능 향상을 위해서 입력소음음성 향상과 SNR(Signal to Noise Ratio)기반 가중 함수 $w_m$를 적용한 KL 거리 $D_s$를 실험하였다. GMM-UBM(Gaussian Mixture Model-Universal Background Model) 기반 KL(Kullback Leibler) 거리 D를 이용한 화자 변화 검증 시스템(실험 0)을 기본 시스템으로 한다. 실험 1은 실험 0의 입력소음음성 향상을 위해 MMSE Log-STSA(Minimum Mean Square Error Log-Spectral Amplitude Estimator)를 적용하였다. 실험 2는 실험 1의 기존 KL거리 D 대신에 $D_s$를 적용하였다. 실험 데이터베이스는 다양한 소음을 반영하기 위해 스포츠 뉴스와 실외 인터뷰를 중심으로 구축하였다. 실험은 화자 변화 정보의 누락을 막기 위해 MDR(Missed Detection Rate) 0%를 기준으로 하였다. 실험 0은 FAR(False Alarm Rate) 71.5%의 성능을 보였다. 실험 1은 FAR 67.3%로 실험0에 비해 4.2% 향상되었고, 실험 2는 FAR 60.7%로 10.8% 향상되었다.
Broadcast news transcription is one of the hardest tasks in speech recognition because broadcast speech signals have much variability in speech quality, channel and background conditions. We developed a Korean broadcast news speech recognizer. We used a morpheme-based dictionary and a language model to reduce the out-of·vocabulary (OOV) rate. We concatenated the original morpheme pairs of short length or high frequency in order to reduce insertion and deletion errors due to short morphemes. We used a lexicon with multiple pronunciations to reflect inter-morpheme pronunciation variations without severe modification of the search tree. By using the merged morpheme as recognition units, we achieved the OOV rate of 1.7% comparable to European languages with 64k vocabulary. We implemented a hidden Markov model-based recognizer with vocal tract length normalization and online speaker adaptation by maximum likelihood linear regression. Experimental results showed that the recognizer yielded 21.8% morpheme error rate for anchor speech and 31.6% for mostly noisy reporter speech.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.