• 제목/요약/키워드: Background Similarity

검색결과 190건 처리시간 0.019초

Background Initialization by Spatiotemporal Similarity

  • 박구만
    • 방송공학회논문지
    • /
    • 제12권3호
    • /
    • pp.289-292
    • /
    • 2007
  • A background initialization algorithm based on the spatiotemporal similarity measure in a motion tracking system is proposed. From the accumulated difference between the base frame and the other frames in a subinterval, the regions affected by moving objects are located. The median is applied over the subsequence in the subinterval in which co-located regions share the similarity. The outputs from each subinterval are filtered by second stage median filter. The proposed method showed good results even in the busy and crowded sequences where the real background does not exit.

Retrieval of Scholarly Articles with Similar Core Contents

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권3호
    • /
    • pp.5-27
    • /
    • 2017
  • Retrieval of scholarly articles about a specific research issue is a routine job of researchers to cross-validate the evidence about the issue. Two articles that focus on a research issue should share similar terms in their core contents, including their goals, backgrounds, and conclusions. In this paper, we present a technique CCSE ($\underline{C}ore$ $\underline{C}ontent$ $\underline{S}imilarity$ $\underline{E}stimation$) that, given an article a, recommends those articles that share similar core content terms with a. CCSE works on titles and abstracts of articles, which are publicly available. It estimates and integrates three kinds of similarity: goal similarity, background similarity, and conclusion similarity. Empirical evaluation shows that CCSE performs significantly better than several state-of-the-art techniques in recommending those biomedical articles that are judged (by domain experts) to be the ones whose core contents focus on the same research issues. CCSE works for those articles that present research background followed by main results and discussion, and hence it may be used to support the identification of the closely related evidence already published in these articles, even when only titles and abstracts of the articles are available.

차량의 헤드라이트에 강인한 실시간 객체 영역 검출 (Realtime Object Region Detection Robust to Vehicle Headlight)

  • 연승호;김재민
    • 한국멀티미디어학회논문지
    • /
    • 제18권2호
    • /
    • pp.138-148
    • /
    • 2015
  • Object detection methods based on background learning are widely used in video surveillance. However, when a car runs with headlights on, these methods are likely to detect the car region and the area illuminated by the headlights as one connected change region. This paper describes a method of separating the car region from the area illuminated by the headlights. First, we detect change regions with a background learning method, and extract blobs, connected components in the detected change region. If a blob is larger than the maximum object size, we extract candidate object regions from the blob by clustering the intensity histogram of the frame difference between the mean of background images and an input image. Finally, we compute the similarity between the mean of background images and the input image within each candidate region and select a candidate region with weak similarity as an object region.

Tracking Object Movement via Two Stage Median Operation and State Transition Diagram under Various Light Conditions

  • Park, Goo-Man
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.11-18
    • /
    • 2007
  • A moving object detection algorithm for surveillance video is here proposed which employs background initialization based on two-stage median filtering and a background updating method based on state transition diagram. In the background initialization, the spatiotemporal similarity is measured in the subinterval. From the accumulated difference between the base frame and the other frames in a subinterval, the regions affected by moving objects are located. The median is applied over the subsequence in the subinterval in which regions share similarity. The outputs from each subinterval are filtered by a two-stage median filter. The background of every frame is updated by the suggested state transition diagram The object is detected by the difference between the current frame and the updated background. The proposed method showed good results even for busy, crowded sequences which included moving objects from the first frame.

유사도 분석과 명암 보정을 통한 혈관 추출 (Extracting Blood Vessels through Similarity Analysis and Intensity Correction)

  • 장석우
    • 인터넷정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.33-43
    • /
    • 2006
  • 본 논문에서는 조영 영상을 받아들여 관상동맥을 효과적으로 추출하는 방법을 소개한다. 혈관 추출에 일반적으로 사용되는 디지털 혈관조영술(DSA : Digital Subtraction Angiography)은 조영제 투입 전에 촬영된 마스크 영상과 조영제 투입 후의 혈관 대비가 나타나는 라이브 영상과의 차이를 이용하여 빠르게 혈관 영역만을 검출하는 방법이다. 그러나 이 방법은 배경의 움직임에 민감하고 두 영상간의 지역적인 배경 명암 분포의 변화에 따라 오 검출이 발생할 수 있다는 단점을 가진다. 따라서 본 논문에서는 배경 텍스쳐의 유사도를 분석하여 움직임의 차이가 가장 작은 영상을 선택함으로써 배경의 움직임에 기인하는 구조적인 문제를 해결하고, 선택된 영상의 지역적 명암 보정을 통해 혈관 영역만을 효과적으로 추출하는 방법을 제안한다. 실험 결과는 제안된 방법이 기존의 방법보다 오 인식률은 감소하고 정확도는 증가함을 보여준다.

  • PDF

Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng;Lu, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1264-1286
    • /
    • 2018
  • In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.

이미지 유사도를 이용한 와인라벨 인식 시스템 (Wine Label Recognition System using Image Similarity)

  • 정종문;양형정;김수형;이귀상;김선희
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.125-137
    • /
    • 2011
  • 최근 휴대폰 카메라로 촬영한 영상을 입력으로 사용하는 시스템에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 와인라벨의 문자를 인식한 후, 데이터베이스내의 와인이미지들 중에서 입력 와인라벨 이미지와 유사한 순서대로 사용자에게 보여주는 시스템을 제안한다. 이미지의 유사도 계산을 위해 본 논문에서는 이미지의 각 영역별 대표색상, 텍스트 영역의 텍스트 색상과 배경색상, 그리고 특징점의 분포를 특징으로 사용한다. 이미지의 색상차를 계산하기 위해 RGB색상을 CIE-Lab색상으로 변환하여 사용하고, 특징점은 해리스코너 검출 알고리즘을 사용하여 추출한다. 각 셀의 대표 색상차와 텍스트 색상차 및 배경 색상차는 가중치를 적용하여 색상차 유사도를 계산하고 색상차 유사도와 특징점 분포 유사도를 정규화하여 최종 이미지 유사도를 구한다. 본 논문에서는 입력 이미지와 데이터베이스내의 이미지 간의 유사도를 계산하여 유사도 순으로 사용자에게 검색 결과를 보여줌으로써 검색 결과로부터 다시 최대 유사 와인라벨을 수동으로 찾는 노력을 줄일 수 있다.

상수도 미보급 지역의 지하수 수질상태 평가를 위한 배경농도 산정방법에 관한 연구 (A study on estimating background concentration of groundwater for water quality assessment in non-water supply district)

  • 여영도;서용교;김락현;조동준;김광식;조욱상
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.345-358
    • /
    • 2014
  • For introducing the groundwater quality assessment using background concentration of groundwater, several methods had been studied to estimate the background concentration of groundwater and to suggest the background concentration of study area. Some methods such as Box whisker plot, Percentile and Cumulative probability distribution had been adopted to estimate background concentration, and it was evaluated that the Cumulative probability distribution method presents more reasonable background concentration because it can consider the data distribution. So we estimated the background concentration of study area using cumulative probability distribution method. We suggested the background concentration for each hydrogeology respectively in case hydrogeological water quality similarity is very low.

Learning Free Energy Kernel for Image Retrieval

  • Wang, Cungang;Wang, Bin;Zheng, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권8호
    • /
    • pp.2895-2912
    • /
    • 2014
  • Content-based image retrieval has been the most important technique for managing huge amount of images. The fundamental yet highly challenging problem in this field is how to measure the content-level similarity based on the low-level image features. The primary difficulties lie in the great variance within images, e.g. background, illumination, viewpoint and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, discover and highlight the content-level information, and be robust to those variances. Motivated by these observations, we in this paper propose a probabilistic similarity learning approach. We first model the distribution of low-level image features and derive the free energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a learning approach for the derived kernel, under the criterion that the kernel outputs high similarity for those images sharing the same class labels and output low similarity for those without the same label. The advantages of the proposed approach, in comparison with previous approaches, are threefold. (1) With the ability inherited from probabilistic models, the similarity measure can well adapt to data distribution. (2) Benefitting from the content-level hidden variables within the probabilistic models, the similarity measure is able to capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. The proposed approach is extensively evaluated on two well-known databases. It achieves highly competitive performance on most experiments, which validates its advantages.

물체 분할 기법을 이용한 내용기반 영상 검색 (A Content-Based Image Retrieval using Object Segmentation Method)

  • 송석진;차봉현;김명호;남기곤;이상욱;주재흠
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2003
  • 현재 사회전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 논문에서는 정지영상 검색을 위해 사용자가 질의(query)를 요구하면 질의 물체를 배경으로부터 분할한 후 유사물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상이 들어오면 우선 메디안 필터링 처리를 하여 잡음 제거한 후 캐니 에지 탐지법으로 물체의 에지를 구한다. 그리고 볼록 다각형 기법을 이용하여 배경으로부터 질의물체를 분할한다. 분할된 영상으로부터 컬러 히스토그램을 구한 후 데이터 베이스내의 영상과 히스토그램 인터섹션을 하여 유사치를 구한다 또한 공간적 그레이 분포와 질감특성을 추출하기 위해 분할된 영상을 그레이 영상으로도 변환시켜 웨블릿 변환한 후 밴디드 오토코릴로그램과 에너지를 구해 유사치를 구한다. 이렇게 구한 유사치을 더해 최종 유사영상을 검색하는데 물체 분할기법을 사용함으로써 배경에 강인할 뿐 아니라 보다 정확한 물체 검색이 가능하였다.

  • PDF