• Title/Summary/Keyword: Backbone Assignments

Search Result 38, Processing Time 0.018 seconds

Backbone 1H, 15N, and 13C Resonance Assignment of HP1242 from Helicobacter pylori

  • Kang, Su-Jin;Park, Sung-Jean;Jung, Seo-Jeong;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.591-594
    • /
    • 2005
  • One of the small proteins from Helicobacter pylori, HP1242, was investigated by the solution nuclear magnetic resonance (NMR) spectroscopy. HP1242 is known as a 76-residue conserved hypothetical protein and its function cannot be identified based on sequence homology. Here, the results of the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of the HP1242 are reported using double- and triple-resonance techniques. About 95% of all of the $^1HN$, $^{15}N$, $^{13}CO$, $^{13}C{\alpha}$, and $^{13}C{\beta}$ resonances that cover 75 non- Proline residues of the 76 residues are clarified through sequential- and specific- assignments. In addition, three helical regions were clearly identified on the basis of the resonance assignments.

Backbone NMR assignments of the anti-CRISPR AcrIIA5 from phages infecting Streptococcus thermophilus

  • An, So Young;Kim, Eun-Hee;Bae, Euiyoung;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.70-76
    • /
    • 2020
  • The CRISPR-Cas system provides an adaptive immunity for bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, a single effector protein Cas9 and a guide RNA form an RNA-guided endonuclease complex that can degrade DNA targets of foreign origin. To avoid the Cas9-mediated destruction, phages evolved anti-CRISPR (Acr) proteins that neutralize the host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone 1H, 15N, and 13C resonance assignments of AcrIIA5 that inhibits the endonuclease activity of type II-A Streptococcus thermophilus Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The backbone chemical shifts of AcrIIA5 predict a disordered region at the N-terminus, followed by an αββββαβββ fold.

Backbone NMR Assignments of a Putative p53-binding Domain of the Mitochondrial Hsp40, Tid1

  • Jo, Ku-Sung;Sim, Dae-Won;Kim, Eun-Hee;Kang, Dong-Hoon;Ma, Yu-Bin;Kim, Ji-Hun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2018
  • Human Tid1, belonging to the family of the Hsp40/DnaJ, functions as a co-chaperone of cytosolic and mitochondrial Hsp70 proteins. In addition, the conserved J-domain and G/F-rich region of Tid1 has been suggested to interact with the p53 tumor suppressor protein, to translocate it to the mitochondria. Here, backbone NMR assignments were achieved for the putative p53-binding domain of Tid1. The obtained chemical shift information identified five ${\alpha}$-helices including four helices characteristic of J-domain, which are connected to a short ${\alpha}$-helix in the G/F-rich region via a flexible loop region. We expect that this structural information would contribute to our progressing studies to elucidate atomic structure and molecular interaction of the domain with p53.

1H, 15N, and 13C Resonance Assignments of the Anti-CRISPR AcrIIA4 from Listeria monocytogenes Prophages

  • Kim, Iktae;Kim, Nak-Kyoon;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.3
    • /
    • pp.71-75
    • /
    • 2018
  • The CRISPR-Cas system is the adaptive immune system in bacteria and archaea against invading phages or foreign plasmids. In the type II CRISPR-Cas system, an endonuclease Cas9 cleaves DNA targets of phages as directed by guide RNA comprising crRNA and tracrRNA. To avoid targeting and destruction by Cas9, phages employ anti-CRISPR (Acr) proteins that act against host bacterial immunity by inactivating the CRISPR-Cas system. Here we report the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of AcrIIA4 that inhibits endonuclease activity of type II-A Listeria monocytogenes Cas9 and also Streptococcus pyogenesis Cas9 using triple resonance nuclear magnetic resonance spectroscopy. The secondary structures of AcrIIA4 predicted by the backbone chemical shifts show an ${\alpha}{\beta}{\beta}{\beta}{\alpha}{\alpha}$ fold, which is used to determine the solution structure.

Backbone NMR Assignments and Secondary Structure Determination of a Cupin-family Protein YaiE from Escherichia coli

  • Lee, Sung-Hee;Sim, Dae-Won;Kim, Eun-Hee;Kim, Ji-Hun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.50-54
    • /
    • 2017
  • Cupin-superfamily proteins represent the most functionally diverse groups of proteins and include a huge number of functionally uncharacterized proteins. Recently, YaiE, a cupin protein from Escherichia coli has been suggested to be involved in a novel activity of pyrimidine/purine nucleoside phosphorylase (PPNP). In the present study, we achieved a complete backbone NMR assignments of YaiE, by a series of heteronuclear multidimensional NMR experiments on its [$^{13}C/^{15}N$]-enriched sample. Subsequently, secondary structure analysis using the assigned chemical shift values identified 10 obvious ${\beta}-strands$ and a tentative $3_{10}-helix$. Taken all together, the results constitute the first structural characterization of a putative PPNP cupin protein.

Backbone Assignment of Phosphorylated Cytoplasmic Domain B of Mannitol Transporter IIMtl in Thermoanaerobacter Tengcongensis

  • Lee, Ko On;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.20-25
    • /
    • 2017
  • The cytoplasmic domains A and B of the mannitol transporter enzyme $II^{Mtl}$ are covalently linked in Escherichia coli, but separately expressed in Thermoanaerobacter Tengcongensis. The phosphorylation of domain B ($TtIIB^{Mtl}$) substantially increases the binding affinity to the domain A ($TtIIA^{Mtl}$) in T. Tengcongensis. To understand the structural basis of the enhanced domain-domain interaction by protein phosphorylation, we obtained NMR backbone assignments of the phospho-$TtIIB^{Mtl}$ using a standard suite of triple resonance experiments. Our results will be useful to monitor chemical shift changes at the active site of phosphorylation and the binding interfaces.

1H, 15N, and 13C backbone assignments and secondary structure of the cytoplasmic domain A of mannitol trasporter IIMannitol from Thermoanaerobacter Tencongensis phosphotransferase system

  • Lee, Ko-On;Suh, Jeong-Yong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • The mannitol transporter Enzyme $II^{Mtl}$ of the bacterial phosphotransferase system has two cytoplasmic phosphoryl transfer domains $IIA^{Mtl}$ and $IIB^{Mtl}$. The two domains are linked by a flexible peptide linker in mesophilic bacterial strains, whereas they are expressed as separated domains in thermophilic strains. Here, we carried out backbone assignment of $IIA^{Mtl}$ from thermophilic Thermoanaerobacter Tencongensis using a suite of heteronuclear triple resonance NMR spectroscopy. We have completed 94% of the backbone assignment, and obtained secondary structural information based on torsion angles derived from the chemical shifts. $IIA^{Mtl}$ of Thermoanaerobacter Tencongensis is predicted to have six ${\beta}$ strands and six ${\alpha}$ helices, which is analogous to $IIA^{Mtl}$ of Escherichia coli.

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.

Oxidation-induced conformational change of Hsp33, monitored by NMR

  • Lee, Yoo-Sup;Kim, Ji-Hoon;Seo, Min-Duk;Ryu, Kyoung-Seok;Kim, Eun-Hee;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2015
  • Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.

NMR Structural Analysis and 3D Homology Modelling of APG8a from Arabidopsis thaliana

  • Chae Young-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.1
    • /
    • pp.96-104
    • /
    • 2006
  • The gene coding for APG8a (At4g21980), a protein from Arabidopsis thaliana, is involved in the autophagy process. The protein is an interesting candidate for structure determination by NMR spectroscopy. Toward this end, APG8a has been produced recombinantly in Escherichia coli and typical NMR experiments such as $^{15}N-HSQC$, HNCA, HN(CO)CA, CBCA(CO)NH, HCCH-TOCSY, HNCO were performed. The backbone resonances, HN, N, CA, CB, and C' were sequence-specifically assigned, and the secondary structures including 3 $\alpha$ helices and $4\beta$ strands were deduced based on the assignments. Due to the intrinsic flexibility or the effect of the denaturant, the backbone resonances were not fully observed. Since the structure calculation by NMR data was not possible, the 3-dimensional model was built based on the sequence homology, and compared with the NMR results. The overall structure of the model could explain and complement the NMR derived secondary structures.

  • PDF