• Title/Summary/Keyword: Back-to-back wall

Search Result 336, Processing Time 0.025 seconds

Multi-layered Ground Back Analysis of Retaining Wall Using Differential Evolution Algorithm : Basic Research of Digital Twin (차분진화 알고리즘을 이용한 흙막이 벽체의 다층지반 역해석 : 디지털 트윈 기초연구)

  • Lee, Donggun;Kang, Kyungnam;Song, Kiil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.25-30
    • /
    • 2022
  • It is very important to investigate the ground properties of a construction site for the stability during the construction of the retaining wall. In the retaining wall construction stage, ground properties are checked through ground investigation, but the actual ground properties may be different from the ground investigation result. In order to analyze the stability of the retaining wall in real time, it is important to reflect the properties of the actual ground. Also, when it is judged that the wall is unstable, an appropriate solution must be provided for the stability of the wall. This study aims to present a technique for predicting the actual ground properties through a differential evolution algorithm and judging the stability of the earth wall in real time through the digital twin of the retaining wall.

Effect of Posterior-Anterior Mobilization of the Thoracic Spine on Pain, Respiratory Function, and Thoracic Circumference in Patients With Chronic Low Back Pain

  • Park, Ju-jung;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2018
  • Background: Posterior-anterior (PA) vertebral mobilization, a manual therapy technique has been used for relieving pain or stiffness treating in spinal segment for in clinical practice, however evidence to gauge efficacy is yet to be synthesised. Objects: This study aimed to investigate the effect of PA mobilization of the thoracic spine on the respiratory function in patients with low back pain (LBP). Methods: The study participants included 30 patients with chronic LBP. They were randomly allocated to the experimental and control groups. The experimental and control groups received PA mobilization of the T1-T8 level of the thoracic spine and placebo mobilization, respectively. All patients received interventions for 35 minutes a day, five times a week, over 2-week period, respectively. Forced vital capacity (FVC), forced expiratory volume in 1 second ($FEV_1$), peak expiratory flow (PEF), forced expiratory flow 25~75% ($FEF_{25{\sim}75%}$), and chest wall expansion were measured before and after the intervention. Statistical analysis was performed using independent t-test and two-way analysis of variance, and Pearson's correlation analysis was used to compare the correlation between respiratory function and chest measurement. Results: The experimental group showed significant improvements in FVC, $FEV_1$, PEF, $FEF_{25{\sim}75%}$ (p<.05), and chest wall expansion (p<.05) compared with the control group. Conclusion: PA mobilization of the upper thoracic spine may be beneficial for improving respiratory function parameters including FVC, $FEV_1$, PEF, $FEF_{25{\sim}75%}$, and chest wall expansion in patients with chronic LBP.

A Study on the Behavior of the Free Space Scatter dose in X-ray Diagnostic Room (X선촬영실 내에서의 공간산란선량 변동에 관한 연구)

  • Oh, Hyun-Joo;Kim, Sung-Soo;Kim, Young-Il;Lim, Han-Young;Kim, Heung-Tae;Lee, Who-Min;Kim, Hak-Sung;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 1994
  • In this pauper, when the X-ray exposure condition is 70, 90, 110 kV, 10 mAs, FFD 180 cm, FSO $10{\times}10$, $35{\times}35\;cm$, toward the $36{\times}36{\times}15\;cm$ acryl phantom, the free space scatter dose rate at the 15th points in X-ray diagnostic room was measured by electrometer and 1800 co ionization chamber. Therefore, the free space scatter dose distribution profile was drown, and then, the free space scatter dose contribution percentage was Investigated. The obtained results are summarized as following. 1. The X-ray tube leakage dose rate of the experiment generator at the 1 m from focus was measured maximum 85 mR/hr, minimum 20 mR/hr, therefore, this values was appeared below the KS rules, 2. The free space scatter dose become to larger at the primary X-ray beam around area, and lower at the back ward X-ray tube. The maximum values were 3,812 mR/hr at the front Lt 1 m $45^{\circ}$ point, minimum 117 mR/hr at the back ward 1 m $180^{\circ}C$ point. 3. As the more tube voltage and field size increase, the more free space scatter dose contribution percentage become to increase, as to 90 kV from 70 kV, increase to 12 %, to 110 kV from 90 kV, increase to 18 %, and then, become to 11 % at the $10{\times}10\;cm$ and 87 % at the $35{\times}35\;cm$. 4. The 89 % of the total producted scatter ray occured from acryl phantom, at the X-ray tube housing 6 %, at the front side back wall 5 %. 5. The free space scatter dose contribution percentage at the one point build up 80 % from the phanton direction, 14 % from the X-ray tube and collimator direction, 2.2 % from the front wall, 1.8 % from the side wall, 1.7 % the back wall.

  • PDF

Analysis of Monitoring Results and Back Analysis for Rigid Diaphragm Wall Supported by Ground Anchor (지반앵커로 지지된 강성 지하연속벽체의 상세계측 결과분석 및 역해석 평가)

  • Lee, Jong-Sung;Hwang, Eui-Suk;Cho, Sung-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • In this study, behavior of a rigid continuous wall, earth pressure distribution with construction stage, and axial force of earth anchors were evaluated based on field monitoring data and numerical analysis results. For this purpose, a construction site excavated using the diaphragm wall was selected and full instrumentation system was introduced. From monitoring results, it was found that the values of horizontal displacement of the wall measured from the inclinometers, which were installed within the diaphragm wall were similar to analytical value. The earth pressure increased with excavation progress due to jacking force of the ground anchors installed in previous excavation stages. When the excavation depth reached 60% of the final depth, observed earth pressure distribution was similar to that estimated from Peck's apparent earth pressure distribution. When the excavation depth was around 90% of the final depth, values of observed earth pressure showed middle values between those of Peck's and Tschebotarioffs apparent earth pressures. It was also observed that, when excavation depth is deep, values of the earth pressures from the rigid wall were similar to those estimated from conventional earth pressure distribution shape proposed for flexible walls.

A Study on the Behaviour of Diaphragm Wall by the installation of CGS (CGS 시공으로 인한 지중연속벽체 거동에 관한 연구)

  • Kim, Dong-Hee;Hong, Sung-Jin;Min, Ki-Hoon;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1206-1215
    • /
    • 2008
  • In this study, the equivalent pressure acting on the face of drilled hole was determined by back analysis. This analysis was continued until the difference between the displacement directly measured during field test construction of CGS and the displacement evaluated by numerical analysis was below 10 percent, and the affect of diaphragm wall adjacent to grout bulb was evaluated by numerical analysis using the equivalent pressure. From the analysis results, it was observed that the increase of the pressure acting on the diaphragm wall was greater at reclaimed sandfill layer than silty clay layer during the installation of CGS. Two methods were adopted to reduce the pressure acting on the diaphragm wall. One is installing of trench between diaphragm wall and grout bulb, the other is pre-installing of CGS before construction of diaphragm wall. From the numerical analysis results, above two methods can be considered as an effective method to reduce the pressure. It was analyzed that the amount of reduction of the pressure and the displacement are 689.8% and 564.6%, respectively, in the case of adopting the trench method, and 463.7% and 214.0%, respectively, in the case of adopting pre-installing of 3 columns CGS.

  • PDF

A Study on the Wall Following Method of the Motorized Wheelchair (전동휠체어의 벽면추종 기법에 관한 연구)

  • 최인구;이응혁
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.209-216
    • /
    • 1994
  • The objective of the research reported in this paper is to design locomotion system of the motorized wheelchair, to develope the wall following algorithm. The indoor navigation of a motorized wheelchair can be based on the wall following techniques. In this paper, it is proposed to enhance stability and efficiency using the 3 ultrasonic sensors arranged at a same perpendicular pivot. Using this method, the angle between the motorized wheelchair and the wall is detected and the range of control commands has been increased. For the better stability, the calculated slope of a wall using LSLF algorithm was fed back to the control part. By adapting the suggested algorithm and method, the motorized wheelchair could follow a wall in 4 seconds, for a change of distance between the wheelchair and wall from 30 to 100cm.

  • PDF

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

Computational and Experimental Simulations of the Flow Characteristics of an Aerospike Nozzle

  • Rajesh, G.;Kumar, Gyanesh;Kim, H.D.;George, Mathew
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Single Stage To Orbit (SSTO) missions which require its engines to be operated at varying back pressure conditions, use engines operate at high combustion chamber pressures (more than 100bar) with moderate area ratios (AR 70~80). This ensures that the exhaust jet flows full during most part of the operational regimes by optimal expansion at each altitude. Aero-spike nozzle is a kind of altitude adaptation nozzle where requirement of high combustion chamber pressures can be avoided as the flow is adapted to the outside conditions by the virtue of the nozzle configuration. However, the thrust prediction using the conventional thrust equations remains to be a challenge as the nozzle plume shapes vary with the back pressure conditions. In the present work, the performance evaluation of a new aero-spike nozzle is being carried out. Computational studies are carried out to predict the thrust generated by the aero-spike nozzle in varying back pressure conditions which requires the unsteady pressure boundary conditions in the computational domain. Schlieren pictures are taken to validate the computational results. It is found that the flow in the aero-spike nozzle is mainly affected by the base wall pressure variation. The aerospike nozzle exhibits maximum performance in the properly expanded flow regime due to the open wake formation.

Shear Band Formation in Granular Materials with Different Particle Shapes behind a Retaining Wall

  • Zhuang, Li;Kim, Ukgie
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.39-47
    • /
    • 2013
  • Local deformations in back filling materials of two sands and one glass bead with different particle shapes behind a rigid retaining wall were studied. Two kinds of boundary conditions were compared: active wall translation and active rotation of the wall about its toe. Effect of the speed of active wall translation was also investigated. The digital image correlation method was used to analyze local deformation developments inside the materials. Test results showed that particle shape and density mainly influence the inclination angle and width of the shear band. The general shear band pattern is strongly dependent on the wall movement mode, while it was little influenced by particle shape. Within a limited range of wall speed in this study, shear band became wider and local deformation became larger with increase of wall speed.