• Title/Summary/Keyword: Back-to-back wall

Search Result 336, Processing Time 0.025 seconds

Behavior Analysis of Block Type Wall Constructed for Maintaining the Slope Stability of Rural Structure (농촌건축물 사면 안정성 확보를 위한 블록식 옹벽의 거동분석)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.115-126
    • /
    • 2000
  • Retaining walls are used to prevent excessive movement of retained soils. Typical retaining walls include gravity, reinforced concrete, reinforced earth and tie-back. However, from a practical viewpoint there are still drawbacks among these often constructed retaining walls. New types of retaining walls constructed with precast concrete blocks are proposed. This type of retaining wall is incorporates each blocks interconnected with adjacent block by connecting unit to build up a flexible retaining-wall system. This paper focus to behavior characteristics includes deformation and distribution of lateral earth pressure by loading tests and FEM analysis. For model tests, a 1/10 scale reduce models are manufactured include unevenness part, drainage hole and connecting unit and steel wire used to connect each blocks with adjacent block. To simulate the real retaining walls closely, uneven parts are interconnected each other and the construction type of blocks and wall front inclination are varied to investigate the relative displacement of individual block and the location of maximum deformation of wall as increasing surcharging. Additionally, PENTAGON3D, which solve the geotechnical and other problem, used for verifying and comparing with model tests.

  • PDF

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant (지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정)

  • Rahman, Md Motiur;Nahar, Tahmina Tasnim;Baek, Geonhwi;Kim, Dookie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Static Earth Pressure on Rigid Walls Backfilled by Cohesionless Soils (비점성토로 뒷채움한 강성옹벽에 작용하는 정적토압)

  • 정성교;백승훈
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 1993
  • The Coulomb and Rankine theories have been usually used for design of retaining walls, in which the earth pressures have been assumed as a triangular distribution For the rigid retaining w리1 with inclined bacuace and horizontal surface backfilled by cohesionless soils, the analytical method of earth pressure distribution has been newly suggested by using the concept of the flat arch. The active thrust obtained by this method agrees well with those by the existing theories, except the Rankine solution. The analyzed results show that the height to the center of pressure depends mainly on the inclination of the back wall and the wall friction, instead of 0.33H, where H is the wall height.

  • PDF

Analytical and ANN-based models for assessment of hunchback retaining walls: Investigating lateral earth pressure in unsaturated backfill

  • Sivani Remash Thottoth;Vishwas N Khatria
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.285-305
    • /
    • 2024
  • This study investigates the behaviour of hunchback retaining walls supporting unsaturated sandy backfill under active earth pressure conditions. Utilizing a horizontal slice method and a unified effective stress methodology, the influence of various factors on lateral earth pressure, including the position of the hunch along the wall, friction angles, and wall heights, is explored. The results suggest that relocating the hunch position from close to the wall's top to near its base leads to a significant decrease (ranging from 54% to 81%) in lateral earth pressure. However, as the hunch position transitions from near the top to mid-height, the point of application of active thrust shifts upward initially, then slightly downward as the hunch position approaches the toe. Notably, the reduction in lateral earth pressure is more pronounced for shorter wall heights and higher friction angles. Building upon these findings, an Artificial Neural Network (ANN)-based model is developed to accurately predict the lateral earth pressure coefficient and point of application, achieving R2 values of 0.94 and 0.93, respectively. In addition, an analytical model based on Coulomb's earth pressure theory is presented and compared with ANN models. These models are anticipated to assist designers and practitioners in optimizing hunchback retaining walls for unsaturated backfill.

Synthesis and Spectroscopic Characterization of Vanadium incorporated V-AlMCM-41 Molecular Sieves

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-41 followed by calcinations generated $V^{5+}$ species in the mesoporous materials. Dehydration results in the formation of a vanadyl species, $VO^{2+}$, that can be characterized by electron spin resonance (ESR). The chemical environment of the vanadium centers in V-AlMCM-41 was investigated by XRD, EDX, diffuse reflectance UV-VIS, ESR, $^{29}Si,\;^{27}Al,\;and\;^{51}V$ NMR. It was found that the vanadium species on the wall surface and inside the wall of the hexagonal tubular wall of the V-AlMCM-41 were completely oxidized to tetrahedral $V^{5+}$ and transformed to square pyramidal by additional coordination to water molecules upon hydration. The oxidized $V^{5+}$ species on the wall surfaces and inside the wall were also reversibly reduced to $VO^{2+}$ species or lower valences by thermal process.

  • PDF

A Study on the Construction Performance of Curtain Wall Systems Using Fire-Resistant & Light-Weight Inorganic Composite Foam Board (내화성 경량 무기 발포보드를 이용한 커튼월 시스템의 시공성능에 관한 연구)

  • Koo, Young-Ah;Kim, Seong-Eun;Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This study had the goal of analyzing the economic feasibility and constructability of a fire resistant curtain wall system using Light-weight Inorganic Composite Foam Board(LI-CFB). LI-CFBs, new materials with excellent fire resistance are being developed for use as the back panel of curtain wall and their fire resistance has already been analyzed through actual tests in earlier studies. In this study, a mock-up test involving the installation of the fire resistant curtain wall system on an actual building was conducted, and the system was compared with a common curtain wall system. This system is applied in the same way as a common curtain wall system. But the cutting LI-CFBs, which are brought from a factory, are used in the system and attached on the frame (mullion and transom). Even though the system requires more working time than the existing system, the LI-CFBs back panels are easy to cut and do not produce dust. Also, the panels are able to be assured the quality by checking damaged parts easily. Besides having a high level of fire resistance, the system's economic feasibility and constructability meets or exceeds those of the existing system.

The Influence of Unstable Wall Squat Exercise and Stable Bridge Exercise on Posture in Normal Adults (불안정한 지지면에서의 벽 스쿼트 운동과 안정된 지지면에서의 브릿지 운동이 정상 성인의 자세에 미치는 영향)

  • Gong, Won-tae
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Purpose: The purpose of this study is to examine the unstable wall squat exercise and stable bridge exercise on posture in normal adults. Methods: The subjects of this study were 34 university students who were normal health adults, equally and randomly allocated to a unstable wall squat exercise group (male 7, female 10), an experimental group, and a stable bridge exercise group, a control group. Both did so for 30 minutes three times per week over a six-weeks period. Using Back Mapper, their trunk inclination (TIN), trunk imbalance (TIM), pelvic position (PPO), pelvic torsion (PTO), pelvic rotation (PRO) and the position of their scapula (PSA) were evaluated. Results: When the pre-test and post-test results of experimental group and control group were compared, statistically significant differences in TIN, PTO and PSA of experimental group were seen. Conclusion: Unstable wall squat exercise accompanied by abdominal drawing-in may be applied as a method to correct the posture in normal adults.

Consideration of thickness change during progressive drawing process of automotive coupler parts(AL5052-H32) (자동차 커플러 부품(Al5052-H32)의 프로그래시브 드로잉 공정 시 두께 변화 고찰)

  • Park, Sang-Byung;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Progressive drawing processing is one of the manufacturing processes used to mass-produce a variety of products on the industrial site. In this study, the goal is to achieve a uniform product thickness of at least 1.3mm by reducing the wall thickness of the coupler parts used in automotive air conditioning systems to within 15% using A5052-H32 materials. The progressive die was designed using Blank's law of volume invariance. Due to the characteristics of the drawing process, the material thickness in the punch R part decreases and the thickness in the die R part increases. When designing the progressive die of the coupler part, an ironing method, a push back method, and a stand-alone die pad method were applied to each process to design a mold in consideration of the drawing rate and to artificially adjust the thickness change. The suitability of the method used in die design was investigated by measuring the thickness change of forming parts for each process. In the final part, it was confirmed that the thickness measurement values of the five regions of a radial line were implemented as 1.34-1.36 mm.

On the Influence Study to Building by Seoul Sub-way(8-6 site) Tunnel works (서울지하철공사 8-6공구터널 발파작업으로 인한 진동, 소음이 지상주택가 구조물에 미치는 연구조사)

  • Huh Ginn;Cheon Sang Back
    • Explosives and Blasting
    • /
    • v.12 no.1
    • /
    • pp.5-31
    • /
    • 1994
  • On the Seoul Sub-way Tunnel works (8-6 site ). Cautious blasting works were so effectivelly tarried out the vibration record were under 0.3cm /sec and blasting noise was under 75dB which was measured at the ground of house. As a result cautious blasting works under above allowable value was not influenced the structure of house and living. On the architectural survey, There were some hair crack on the wall and floors but this was not a crack from balsting work.

  • PDF