• Title/Summary/Keyword: Back-to-back PWM converters

Search Result 11, Processing Time 0.032 seconds

Developing Function Models of Back-to-Back PWM Converters for Simplified Simulation

  • Van, Tan Luong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • In this paper, a function model of back-to-back PWM converters, based on the switching function, is developed for simplified simulation of power electronic application systems. For the function model, the PWM power switches are represented by dependent power sources. By using the proposed function model, the computer memory and the run time required for the simulation of power circuits can be significantly reduced. It is shown that the simulation results generated from the function models are almost the same as the ones obtained by using the switching power device model.

Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter

  • Gwon, Jin-Su;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.200-207
    • /
    • 2015
  • This paper proposes an active damping control method for a grid-side converter that has an LCL grid filter in the back-to-back converter. To remove the resonant frequency components produced by the LCL filter, it is necessary to measure the grid current. To do this, sensors must be added. However, it is not necessary to add sensors because the grid current is estimated by designing a suboptimal observer. In order to remove the nonlinearity and to gain fast response of control, both feedback linearization and sliding mode control are applied. The proposed method is verified through a simulation.

Implementation of DC/DC Power Buck Converter Controlled by Stable PWM (안정된 PWM 제어 DC/DC 전력 강압 컨버터 구현)

  • Lho, Young-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.371-374
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different stable DC input sources regulated by a bi-polar transistor. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The voltage mode DC/DC converter is composed of a PWM (Pulse Width Modulation) controller, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an inductor, and capacitors, etc. PWM is applied to control and regulate the total output voltage. It is shown that the output of DC/DC converter depends on the variation of threshold voltage at MOSFET and the variation of pulse width. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by SPICE (Simulation Program with Integrated Circuit Emphasis) and experiments.

Effects of the Irradiated Current Mode PWM Controller of DC/DC Power Converter (DC/DC 전력 컨버터의 전류모드 PWM 제어기의 방사선 영향)

  • Lho, Young-Hwan;Hwang, Eui-Sung;Lho, Kyeoung-Su;Phouphanonh, Phouphanonh;Khamphoungeun, Khamphoungeun;Han, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.685-692
    • /
    • 2011
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converters can be used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The current mode DC/DC converter is composed of a PWM (pulse width modulation) controller, a MOSFET, and inductor, etc. Pulse width modulation is applied to control and regulate the total output voltage. It is shown that the variation of threshold voltage at MOSFET and the offset voltage increase caused by radiation effects make the PWM pulse unstable. In the PWM operation, the missing pulses, the changes in pulse width, and a change in the period of the output waveform are studied by simulation program with integrated circuit emphasis (SPICE) and experiments.

  • PDF

Implementation of Grid Connection of DFIG for Wind Power Generation System

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.143-145
    • /
    • 2006
  • This paper presents an overall control algorithm for a grid-connected wind-power generation system using a DFIG(doubly-fed induction generator) fed by back-to-back PWM converters. The control of DFIG is based on a stator-flux oriented vector control. The system enables not only fast and smooth synchronization but also high performance regulation of active and reactive power. Experimental results shows The feasibility of the control algorithm.

  • PDF

A Study on Effective Control Methodology for DC/DC Converter (DC/DC 컨버터의 효율적인 제어기법 연구)

  • Lho, Young Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.756-759
    • /
    • 2014
  • DC/DC converters are commonly used to generate regulated DC output voltages with high-power efficiencies from different DC input sources. The converters can be applied in the regenerative braking of DC motors to return energy back to the supply, resulting in energy savings for the systems at periodic intervals. The fundamental converter studied here consists of an IGBT (Insulated Gate Bipolar mode Transistor), an inductor, a capacitor, a diode, a PWM-IC (Pulse Width Modulation Integrated Circuit) controller with oscillator, amplifier, and comparator. The PWM-IC is a core element and delivers the switching waveform to the gate of the IGBT in a stable manner. Display of the DC/DC converter output depends on the IGBT's changes in the threshold voltage and PWM-IC's pulse width. The simulation was conducted by PSIM software, and the hardware of the DC/DC converter was also implemented. It is necessary to study the fact that the output voltage depends on the duty rate of D, and to compare the output of experimental result with the theory and the simulation.

Radiation Effects on PWM Controller of DC/DC Power Buck Converter (DC/DC 전력 강압 컨버터의 PWM 제어기 방사선 영향)

  • Lho, Young-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • DC/DC switching power converters produce DC output voltages from different DC input sources. The converter is used in regenerative braking of DC motors to return energy back in the supply, resulting in energy savings for the systems containing frequent stops. The DC/DC converter is composed of a PWM-IC (pulse width modulation integrated circuit) controller, a MOSFET (metal-oxide semi-conductor field-effect transistor), an inductor, capacitors, and resistors, etc. PWM is applied to control and regulate the total output voltage. In this paper, radiation shows the main influence on the changes in the electrical characteristics of comparator, operational amplifier, etc. in PWM-IC. In the PWM-IC operation, the missing pulses, the changes in pulse width, and the changes of the output waveform are studied by the simulation program with integrated circuit emphasis (SPICE) and compared with experiments.

A Study on DFIG Wind Power Generation System Modelling using Real-Wind Speed (실제 풍속을 이용한 DFIG 풍력발전시스템 구현에 관한 연구)

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.494_495
    • /
    • 2009
  • This paper presents a study of DFIG wind power generation system for real-time simulation. For real-time simulation, the real-time digital simulator (RTDS) and its user friendly interface simulation software (RSCAD) are used. 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. Stator-flux oriented vector control scheme is applied to stator, rotor side converter control, and back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for realistic and accurate simulation analysis. Block diagrams for DFIG and control scheme of stator, rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

  • PDF

Modeling and Control of a Doubly-Fed Induction Generator (DFIG) Wind Power Generation System for Real-time Simulations

  • Byeon, Gil-Sung;Park, In-Kwon;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents a study of a DFIG wind power generation system for real-time simulations. For real-time simulations, the Real-Time Digital Simulator (RTDS) and its user friendly interface simulation software RSCAD are used. A 2.2MW grid-connected variable speed DFIG wind power generation system is modeled and analyzed in this study. The stator-flux oriented vector control scheme is applied to the stator/rotor side converter control, and the back-to-back PWM converters are implemented for the decoupled control. The real-wind speed signal extracted by an anemometer is used for a realistic, reliable and accurate simulation analysis. Block diagrams, a mathematical presentation of the DFIG and a control scheme of the stator/rotor-side are introduced. Real-time simulation cases are carried out and analyzed for the validity of this work.

Characteristics Analysis of Soft Switching PWM Converter Using a New Active Snubber (새로운 액티브 스너버를 이용한 소프트 스위칭 PWM 컨버터의 특성해석)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Ryong;Suh, Ki-Young;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • This paper proposes converter that new soft switching active snubber circuit is added, the resonance energy return to life rate doing maximum whole efficiency increase. Proposed converter adds auxiliary switch and resonance inductor, resonance capacitor, two diodes to existing converter, all switch elements play turn-on/turn-off under soft switching condition and minimized switching losses. Conduction loss department is that watch layer bringing back to life resonance energy by input perfectly. These result proved through simulation and an experiment.