• Title/Summary/Keyword: Back-bead prediction

Search Result 8, Processing Time 0.023 seconds

The Back-bead Prediction Comparison of Gas Metal Arc Welding (아크 용접의 이면비드 예측 비교)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.81-87
    • /
    • 2007
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. However, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis and artificial neural network were used as the research methods. And, the results of two prediction methods were compared and analyzed.

The Geometry Prediction of Back-bead in Arc Welding

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • This research was done on the basis of assumption that there is a relationship between welding parameters and geometry of the back-bead being a gap in arc welding. Multiple regression analysis was used as method for predicting the geometry of the back-bead. The analysis data and the verification data were used for the formation of multiple regression analysis. The method was used to perform the prediction of the back-bead.

Back-bead Prediction and Weldability Estimation Using An Artificial Neural Network (인공신경망을 이용한 이면비드 예측 및 용접성 평가)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.79-86
    • /
    • 2007
  • The shape of excessive penetration mainly depends on welding conditions(welding current and welding voltage), and welding process(groove gap and welding speed). These conditions are the major affecting factors to width and height of back bead. In this paper, back-bead prediction and weldability estimation using artificial neural network were investigated. Results are as follows. 1) If groove gap, welding current, welding voltage and welding speed will be previously determined as a welding condition, width and height of back bead can be predicted by artificial neural network system without experimental measurement. 2) From the result applied to three weld quality levels(ISO 5817), both experimented measurement using vision sensor and predicted mean values by artificial neural network showed good agreement. 3) The width and height of back bead are proportional to groove gap, welding current and welding voltage, but welding speed. is not.

An Experimental study on Prediction of Back-bead Geometry in Pipeline Using the GMA Welding Process (GMA를 이용한 배관용접의 이면비드 형상예측에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, a variety of welding experiments were carried out to optimize root-pass welding process using GMA process. Based on the experimental results, optimal welding conditions were selected after analyzing correlation between welding parameters and back-bead geometry. Then, effectiveness of empirical models developed was compared and analyzed, and optimized empirical models were finally developed for predicting back-bead by analyzing the main effect of each factor which affects back-bead geometry and their influence on interaction. Also, functions proper for expressing the surface of back-bead were selected using diverse quadratic functions, and back-bead geometry was visualized using empirical models developed and quadratic functions.

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding (아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

A New Technology for Optimization of Bead Height Using ANN

  • Kim, Ill-Soo;Son, Joon-Sik;Sung, Back-Sub;Lee, Chang-Woo;Cha, Yong-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.208-213
    • /
    • 2001
  • Objective of this paper is to develop a new approach involving the use of an Artificial Neural Network(ANN) and multiple regression methods in the prediction of process parameters on bead height for GMA welding process. Using a series of robotic are welding, multi-pass butt welds carried out in order to verify the performance of the neural network estimator and multiple regression methods. To verify the developed system, the design parameters of the neural network estimator are selected from an estimation error analysis. The experimental results show that the proposed models can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF