• Title/Summary/Keyword: Back-Light Unit

Search Result 158, Processing Time 0.03 seconds

Optimization of a Highly Efficient Narrow-viewing-angle LCD for Head-mounted-display Applications (헤드마운트 디스플레이 응용을 위한 고효율 협시야각 LCD 최적화 연구)

  • Wi, Sung Hee;Kang, Min Jin;Hwang, Eui Sun;Baek, Gi Hyeon;Kim, Jin Hwan;Park, Hyeon Uk;Cheong, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.67-73
    • /
    • 2022
  • In a head-mounted display (HMD) for virtual-reality applications, a narrow viewing angle is preferred to the usual, wide viewing angle because the HMD is positioned close in front of the user's eyes, and the display position is fixed. In this paper, we propose a new back-light unit (BLU) for implementing a narrow viewing angle, which is suitable for a HMD. By optimizing the scattering patterns in the light-guide-plate and inverse-prism structures, the viewing angle and correlations between structural parameters in the BLU components are analyzed with ray-tracing simulations. As a result, a double-angle inverse-prism structure incorporating the scattering patterns of a light-guide plate is chosen, which results in a 14% increase in center luminance, a 16% decrease in the vertical viewing angle, and a light efficiency of up to 70%, compared to a conventional BLU. Thus, the new BLU system is expected to be applied in a high-efficiency liquid crystal display.

Design and fabrication of the 2.2inch LGP using DOT Pattern (DOT Pattern을 이용한 2.2인치 LGP의 설계 및 제작)

  • Choi, Kyu-Man;Ahn, Min-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.759-762
    • /
    • 2005
  • The LGP(Light Guide Panel) for the back light unit that is used to the 2.2" TFT LCD was designed and fabricated. The method of the pattern design which is the most important in the design of the LGP was converted the V-cutting method into the Dot method. This newly developed Dot method provided a good uniformity in the brightness at the LGP, which was a very difficult problem to solove in the V-cutting method. The experiment result of the newly designed LGP shows the brightness uniformity 90% and the brightness 3656 $cd/\;m^2$ which is 20% higher than the commercial products.

  • PDF

Fabrication and characterization of thin film asymmetric extrudedclosed-polygon type BLU light guide plate (박막적층 비대칭 Extruded-closed-polygon 형 BLU 도광판의 제작 및 평가)

  • Kim, Byeong-Gwon;Gu, Gyeong-Wan;Han, Chang-Seok;O, Dong-Cheol;Lee, Jae-Gak;Bae, Chang-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.103-104
    • /
    • 2009
  • We proposed the laminate thin film asymmetric Extruded-closed-polygon diffusion pattern that was able to improve the performance of back light unit. Developed a pattern of brightness and bright line, half-power angle attribute the improved performance in the uniform, and through the formation of a thin film stackable diffusion layer 970% improved perpendicularity brightness, and 580% improved horizontality brightness.

  • PDF

Development of a LED BLU Tester Detecting the Errors of LCD Panels (LCD 패널의 불량을 검출하는 검사용 LED BLU 개발)

  • Kouh, Hoon-Joon;Jang, Kyung-Soo;Oh, Ju-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.62-69
    • /
    • 2010
  • LCD panel need BLU(Back Light Unit) that is outside source of light because can not emit light voluntarily. BLU is used in LCD module and is used in tester that examine LCD panel's badness. Lately, BLU had changed from CCFL(Cold Cathode Fluorescent Lamp) to LED(Light-Emitting Diode) fast. CCFL need extra-high tension power and produce much heat and is difficult to keep fixed brightness. LED is few electric power wastage and keeps fixed brightness. But, BLU that is used to detector that examine the LCD module is using CCFL until recently. This paper develops LED BLU that can examine LCD panel's badness. Also, this manufactures LED BLU to 24 inch size to examine all LCD panels(12~24 inch), and develops so that LED BLU may operate according to LCD panel's size.

A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern : II. Mold and Light Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학 패턴의 영향 연구 : II. 금형 및 광특성)

  • Hwang C.J.;Ko Y.B.;Kim J.S.;Min I.K.;Yu J.W.;Yoon K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.339-340
    • /
    • 2006
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

Fabrication and Characterization of Film Type Light Guide Plates by UV Imprint Lithography (UV 임프린팅법에 의한 필름형 광도광판의 제조 및 특성 연구)

  • Kim, Hyeong-Gwan;Kim, So-Won;Lee, Hee-Chul
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.178-185
    • /
    • 2016
  • In this study, we have fabricated light guide plates (LGPs) in thin film form for edge type back light unit (BLU) by using UV imprint lithography. In the LGPs, the pattern of functional resins on PC and PMMA substrates were successfully transferred from original master mold through PVC stamp. Optimized pattern arrays with slowly-sloped density were designed to obtain high brightness and uniformity. We could obtain a relatively improved brightness of $950cd/m^2$ and a uniformity of 87.3% by using the NP-S20 functional resins at an input power of 1.3 W because NP-S20 resin could show high formability after UV hardening process. The LGP prepared on polymethylmethacrylate (PMMA) substrate exhibited higher brightness than that on polycarbonate (PC) substrate because PMMA has lower refractive index resulting in more refraction toward the vertical direction.

Effects on the process factors of blow molding affects to the PET bottle (사출성형 특성을 고려한 2인치 휴대폰용 도광판 금형제작에 관한 연구)

  • Hwang, Chul-Jin;Do, Young-Soo;Kim, Jong-Sun;Min, In-Gi;Kim, Jong-Dug;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

A Low Cost Multiple Current-Voltage Concurrent Control for Smart Lighting Applications (저가형 스마트 LED 조명 구동을 위한 다수의 전류-전압 동시 제어 방법)

  • kim, Tae-hoon;Lee, Sang-hoon;yang, Joon-hyun;Im, Chang-soon;Hyun, Dong-seok;Kim, Rae-young
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.179-180
    • /
    • 2011
  • This paper focuses on the Current-Voltage concurrent control method devoted to the multiple LED (light-emitting diode) string driver. Isolated DC to DC converter with cascaded chopping switch is proposed for smart lighting system such as light with sensor or back light unit of display, which need to control the current of parallel connected multiple LED stings and regulate DC voltage for micro controller for brightness control. The proposed circuit regulates the current of parallel connected multiple LED strings and additional DC voltage output simultaneously. To verify the performance, experimental results are presented based on the prototype board. 5V, 1A voltage mode electric load and two LED strings with different forward voltages are used for output loads. 23W output power is achieved and measured efficiency is in the range of 85%-87%

  • PDF

A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods (도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

A Study on Image Processing For Local Dimming Of LED BLU (LED BLU 분할구동(Local Dimming)을 위한 영상처리 알고리즘에 관한 연구)

  • Kwak, Nae Joung;Han, Seung Hun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.602-606
    • /
    • 2008
  • LCD is supplied light by BLU(Back Light Unit) and the light represents color by each color filter. Also LCD adjusts the amount of light by controlling liquid crystal between the glass of upper plate and one of lower. However, it is impossible to completely exclude light due to the structural and physical characteristic of liquid crystal. Therefore, on transfering light through optical sheet and liquid crystal, many problems are generated. They are related with energy efficiency and get effective for the contrast of LCD to have lower contrast ratio than other display devices. To solve the problems, many techniques have been studied and developed but don't exist keys to solution for them. Among methods, local dimming is one example to be applied to LCD. In this paper we propose image processing algorithm for local dimming of BLU of LED used as light source. The proposed algorithm extracts maximum luminance signal and lights using each extracted signal on segmented region of BLU. Also the proposed algorithm generates image signal in corresponding to luminance of the segmented region and supplies them with LCD panel to represent image with improving luminance ratio.

  • PDF