• Title/Summary/Keyword: Back-EMF observer

Search Result 31, Processing Time 0.022 seconds

Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives (역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향)

  • Kim, Jae-Suk;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Fuzzy back-EMF Observer for Improving Performance of Sensorless brushless DC motor drive (BLDC 전동기용 센서리스 드라이브의 성능 향상을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.220-223
    • /
    • 2005
  • In this paper, a novel sensorless brushless DC (BLDC) motor drive method using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Most existing back-EMF sensing methods need additional circuit and have a low performance intransient state or low speed range. Therefore, this paper proposes the fuzzy back-EMF observer and an algorithm using this observer to estimate a speed and a position of the rotor. The robustness of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.

  • PDF

Improved Instantaneous Reactive Power Compensator Applied Sensorless Control of IPMSM with Adaptive Back EMF and Current Model Observer (개선된 순시 무효전력 보상기와 함께 적용된 적응 역기전력과 전류 모델 관측기 적용한 돌극형 영구자석 동기 전동기의 센서리스 제어)

  • Lee, Joonmin;Park, Soon-je;Hong, Ju-Hoon;Kim, Woohee;Kim, Young Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.934-935
    • /
    • 2015
  • This paper presents the sensorless control method that employs the adaptive back-EMF(Electromotive Force) and current model observer of interior permanent magnet synchronous motor(IPMSM). The estimated back EMF considering a saliency is obtained by using the adaptive control method. The estimated EMF is inputted to the current model observer which is connected in series with adaptive back EMF estimator and is used to estimate the position and speed of the rotor. In order to improve the shortcomings of conventional method using the current error components multiplied in the compensation constant, the modified instantaneous reactive power compensator is applied. The validity of the control system presented is verified by the simulation.

  • PDF

Torque Ripple Reduction based on Flux Linkage Harmonics Observer for an Interior PM Synchronous Motor including Back EMF Harmonics (왜곡된 역기전력을 갖는 매입형 영구자석 동기전동기의 쇄교자속 고조파 관측기를 이용한 토크리플 저감)

  • Jin, Yong-Sin;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The mechanical vibration of a PM synchronous motor at low speeds due to the back emf harmonics may be serious problems in some application such as MDPS(Motor driven power steering), electric vehicles. In this paper, torque ripple reduction for an interior PM synchronous motor including back emf harmonics is proposed. The dq flux linkage harmonics of the permanent magnet are estimated on real time by using the dq currents of the real system and the model of the MRAS observer. Based on the estimated flux linkage harmonics, the dq harmonic currents for reducing the torque ripples are compensated on the dq reference currents. The estimation of the flux linkage harmonics by the MRAS observer and the torque ripple reduction of the proposed algorithm was verified by the simulation and experiment.

A New Approach to Sensorless Control Method for Brushless DC Motors

  • Kim, Tae-Sung;Park, Byoung-Gun;Lee, Dong-Myung;Ryu, Ji-Su;Hyun, Dong-Seok
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.477-487
    • /
    • 2008
  • This paper proposes a new position sensorless drive for brushless DC (BLDC) motors. Typical sensorless control methods such as the scheme with the back-EMF detection method show high performance only at a high speed range because the magnitude of the back-EMF is dependent upon the rotor speed. This paper presents a new solution that estimates the rotor position by using an unknown input observer over a full speed range. In the proposed method, a trapezoidal back-EMF is modelled as an unknown input and the proposed unknown input observer estimating a line-to-line back-EMF in real time makes it possible to detect the rotor position. In particular, this observer has high performance at a low speed range in that the information of a rotor position is calculated independently of the rotor speed without an additional circuit or complicated operation process. Simulations and experiments have been carried out for the verification of the proposed control scheme.

Sensorless Drive of Brushless DC Motors Using an Unknown Input Observer (미지입력 관측기를 이용한 BLDC 전동기 센서리스 드라이브에 대한 연구)

  • Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.215-219
    • /
    • 2005
  • In this paper, a novel motor control method is proposed to improve the performance of sensorless drive of BLDC motors. The unknown input (back-EMF) is modelled as the additional state of system in this paper. Taking into account the disturbance adopted by the back-EMF, the observer can be obtained by the augmented system equation. An algorithm to detect the back-EMF of the BLDC motor using the state observer is constructed. As a result, the novel sensorless drive of BLDC motors that can strictly estimate rotor position and speed is proposed.

  • PDF

Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors

  • Lee, Kwang-Woon;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.604-614
    • /
    • 2012
  • This paper presents a comparative study of position sensorless control schemes based on back-electromotive force (back-EMF) estimation in permanent magnet synchronous motors (PMSM). The characteristics of the estimated back-EMF signals are analyzed using various mathematical models of a PMSM. The transfer functions of the estimators, based on the extended EMF model in the rotor reference frame, are derived to show their similarity. They are then used for the analysis of the effects of both the motor parameter variations and the voltage errors due to inverter nonlinearity on the accuracy of the back-EMF estimation. The differences between a phase-locked-loop (PLL) type estimator and a Luenberger observer type estimator, generally used for extracting rotor speed and position information from estimated back-EMF signals, are also examined. An experimental study with a 250-W interior-permanent-magnet machine has been performed to validate the analyses.

Sensorless Drive of Brushless DC Motors Using an Unknown Input Observer (미지입력 관측기를 이용한 BLDC 전동기 센서리스 드라이브에 대한 연구)

  • Ryu, Ji-Su;Hyun, Dong-Seok;Kim, Tae-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • In this paper, a novel motor control method is proposed to improve the performance of sensorless drive of BLDC motors. In the terminal voltage sensing method, which is a great portion of sensorless control, a precise rotor position cannot be obtained when excessive input is applied to the drive during synchronous operation mode. Especially in the transient state, the response characteristic decreases. To cope with this problem, the unknown input (back-EMF) is modelled as the additional state of system in this paper. Taking into account the disturbance adopted by the back-EMF, the observer can be obtained by the augmented system equation. An algorithm to detect the back-EMF of the BLDC motor using the state observer is constructed. As a result, the novel sensorless drive of BLDC motors that can strictly estimate rotor position and speed is proposed.

A Fuzzy Back-EMF Observer for Sensorless Drive of BLDC Motor (브러시리스 전동기의 센서리스 구동을 위한 퍼지 역기전력 관측기)

  • Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2007
  • In this paper, a novel sensorless drive for brushless DC (BLDC) motor using the fuzzy back-EMF observer is proposed to improve the performance of conventional sensorless drive methods. Existing sensorless drive methods of the BLDC motor have low performance at transients or low speed range and occasionally require additional circuits. To cope with these problems, the back-EMF of the BLDC motor must be precisely estimated by a fuzzy logic, which is suitable to estimate the back-EMF which has a trapezoidal shape. The proposed algorithm using fuzzy back-EMF observer can achieve robust control for the change of an external condition and continuously estimate position of the rotor at transients as well as at steady state. The superiority of the proposed algorithm is proved through the simulation compared with other sensorless drive methods.

Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor (무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어)

  • Kin, Min Ho;Yang, Oh;Kim, Youn Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.