• Title/Summary/Keyword: Back sheet

Search Result 233, Processing Time 0.031 seconds

Electrical output of PV Module according to characteristics and variation Temperature of backsheet (태양광 모듈의 후면 Back sheet의 특성 및 온도 변화에 따른 전기적 출력 특성 변화)

  • Jung, Jin-Su;Kang, Seong-Hwan;Lee, Kyoung-Won;Jung, In-Sung;Lee, Bum-Su;Kim, Chong-Yeal
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60.1-60.1
    • /
    • 2011
  • 태양광 모듈의 효율 증가를 위한 고효율태양전지개발, 광투과율향상, 모듈의 대형화 등 많은 연구개발이 이루어지고 있다. 이중 우리는 태양광 모듈의 후면 sheet인 Back sheet의 특성 및 온도 변화에 따른 모듈의 전기적 출력 특성 변화에 대한 연구를 실시하였다. Back sheet의 두께, 재질, 색상 등 종류는 다양하다. 여기서는 백시트의 색상을 중점으로 White, Blue, Black 3가지와 Glass까지 총 4가지 종류를 가지고 반사율을 측정하고, 모듈화 했을 때 출력을 비교하였다. 그리고 온도별로 효율값을 측정하여 백시트의 색상 종류에 따라서 어떠한 차이가 있는지 비교하였다.

  • PDF

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

Spring-back Improvement According to the Shape Bead Arrangement of Cabin Sunroof in Construction Equipment (건설기계 Cabin Sunroof 형상비드 배치에 따른 스프링백 개선)

  • Bae, G.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.69-73
    • /
    • 2021
  • This paper addresses the product shape modification for spring-back reduction in the sheet metal forming process of the cabin sunroof which is applied to the construction equipment. Initially, the anisotropic material properties are measured in order to calculate the degree of spring-back by the numerical simulation of the sheet metal forming process. To reduce the spring-back of the stamped part, several design modifications are suggested according to the geometrical bead arrangement on the planar region. The degrees of spring-back are confirmed for various product designs with different use of the geometrical bead. Finally, the spring-back improvement was validated by manufacturing the tryout product with the modified die set for the optimized product shape.

New BLU Sheet with Linear Arrays of Deformed Bar Prism for Direct Back Light Unit (직하형 Back Light Unit에 사용하는 변형 막대프리즘의 1차원 배열로 구성한 새로운 BLU 필름)

  • Jang, Sun-Young;Jo, Jae-Heung;Baek, Seung-Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.401-409
    • /
    • 2007
  • A new sheet of back light unit(BLU) to reduce the number of sheets and enhance the optical performances of direct back light unit(BLU) in a liquid crystal display is proposed and designed. In order to improve the straightness and spatial uniformity of brightness of the BLU, we design the new sheet with linear arrays of complicated bar prism by using the fusion of cylindrical lens and bar prism. Then, we investigate and analyze various optical performances of a BLU including the new sheet through an illumination optical system design program. From these results, we determine the optimum geometrical structure of the sheet. Under the optimum condition, the luminance efficiency and spatial uniformity of luminance of the BLU are 53.5% and 83.5% respectively. And the vertical and horizontal widths of the angular luminance distribution are $90^{\circ}$ and $112.5^{\circ}$ respectively. Finally we have fabricated a new BLU sheet according to this design shape by using an ordinary resins.

A Study on Spring Back in Sheet Forming of Amorphous Alloys (아몰퍼스 판재 성형의 스프링 백에 관한 연구)

  • Yoon S.H.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1757-1760
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die corner radius, friction, blank holder force, clearance and initial forming temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling and two modes of spring backs are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

  • PDF

Influence of yield functions and initial back stress on the earing prediction of drawn cups for planar anisotropic aluminum alloys (평면이방성 알루미늄 재료의 귀발생 예측에 있어서 항복함수와 초기 Back-Stress의 영향)

  • ;F. Barlat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.58-61
    • /
    • 1998
  • Anisotropy is closely related to the formability of sheet metal and should be considered carefully for more realistic analysis of actual sheet metal forming operations. In order to better describe anisotropic plastic properties of aluminum alloy sheets, a planar anisotropic yield function which accounts for the anisotropy of uniaxial yield stresses and strain rate ratios simultaneously was proposed recently[1]. This yield function was used in the finite element simulations of cup drawing tests for an aluminum alloy 2008-T4. Isotropic hardening with a fixed initial back stress based on experimental tensile and compressive test results was assumed in the simulation. The computation results were in very good agreement with the experimental results. It was shown that the initial back stress as well as the yield surface shape have a large influence on the prediction of the cup height profile.

  • PDF

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹가공 특성에 관한 연구)

  • Lee K. B.;Lee Y. G.;Kim J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.29-34
    • /
    • 2003
  • In order to study the shearing characteristics of anti-vibration sheet metal which has been bonded by resin, a blanking die of 40.02mm was manufactured to blank a material and it is used to reduce vibrational noise. The variables employed in this study were 1) Clearance 2) types of stripper plate, and 3) types of the die design technique. These variables were used to study the effects on burr height, diameter of product, and camber height. Lastly, the effect of the position of the rubber during blanking was observed. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, resulted in the concentration of additional pressure between the cutting edges, meaning the crack initiation was delayed. This result was not affected by lubrication, although appropriate lubrication is preferred to enable a longer lasting die in terms of wear, which results from the presence of adhesive as the sheet metal is blanked. In the comparison of diameter measurement, the push-back die, combined with the back pressure from the knock-out plate showed a favorable precision. The use of the push back die with a fixed stripper plate, with a $4.5\%$ clearance, showed better accuracy in the diameter measurement. For comparing camber height, the push back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber is laying on the top, blanked with a fixed-stripper plate in a push-back die, with a $4.5\%$ clearance.

  • PDF

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹 가공 특성에 관한 연구)

  • 이광복;이용길;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

Electrical Characteristics of PV Module According to Optical Characteristics of Back-sheet (PV모듈에서 후면Sheet의 광학적 특성에 따른 전기적 출력 특성)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.42-47
    • /
    • 2008
  • In this paper, we analyze the electrical characteristics of PV depending on distance among solar cells before and after lamination process. From the result, the PV module's maximum power increases about 3.37% when solar cells's distance is 10mm. And the maximum power increases up to 8.42% when solar cells's maximum distance is 50mm. It is assumed that PV module's surface temperature decreases because of increasing distance between solar cells that would give high power generation. Also, short distance between solar cell and frame result in contamination on glass. When considering reduced maximum power caused by contaminant, from that. we can fabricated PV module of lower cost with high performance.

  • PDF

A Study of Spring-back Effect According to the Number of Roll Passes in the Roll Forming Process (롤 포밍 공정에서의 롤 패스의 수에 따른 스프링 백 영향 연구)

  • Kim, Dong-Hong;Zhang, Ya;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study was analyed V-bending in order to analyze the spring-back phenomenon in the roll forming process. The material of forming sheet used in the roll forming process is high tension steel and the product name of sheet material is POSTEN 60. The most important variable is the number of roll passes (3-Pass, 4-Pass, 5-Pass, 6-Pass and 10-Pass) and other roll forming process variables were fixed. To determine the characteristics of the tension and compression, the forming sheet was analyzed by dividing the layer (Upper and Bottom) in the thickness direction from the center line. The results of FEM simulation analysis was derived to von-mises stress equivalent strain, and the spring-back value was calculated according to the final forming shape. The more number of the roll pass, von-mises stress and equivalent strain value of forming sheet were lowed. Also, spring-back values tended to decrease. The results of this study can be utilized for prediction and trend of spring-back value in the roll forming process applied to high tension steel sheet. So, development time and cost of the roll forming process is expected to be reduced.