• Title/Summary/Keyword: Back propagation neural network

Search Result 1,073, Processing Time 0.025 seconds

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF

A Novel Scheme for detection of Parkinson’s disorder from Hand-eye Co-ordination behavior and DaTscan Images

  • Sivanesan, Ramya;Anwar, Alvia;Talwar, Abhishek;R, Menaka.;R, Karthik.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4367-4385
    • /
    • 2016
  • With millions of people across the globe suffering from Parkinson's disease (PD), an objective, confirmatory test for the same is yet to be developed. This research aims to develop a system which can assist the doctor in objectively saying whether the patient is normal or under risk of PD. The proposed work combines the eye-hand co-ordination behaviour with the DaTscan images in order to determine the risk of this disorder. Initially, eye-hand coordination level of the patient is assessed through a hardware module. Then, the DaTscan image is analysed and used to extract certain geometrical parameters which shall indicate the presence of PD. These parameters are then finally fed into a Multi-Layer Perceptron Neural Network using Levenberg-Marquardt (LM) Back propagation training algorithm. Experimental results indicate that the proposed system exhibits an accuracy of around 93%.

ANN Rotor Resistance Estimation of Induction Motor Drive using Multi-AFLC (다중 AFLC를 이용한 유도전동기 드라이브의 ANN 회전자저항 추정)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.45-56
    • /
    • 2011
  • This paper is proposed artificial neural network(ANN) rotor resistance estimation of induction motor drive controlled by multi-adaptive fuzzy learning controller(AFLC). A simple double layer feedforward ANN trained by the back-propagation technique is employed in the rotor resistance identification. In this estimator, double models of the state variable estimations are used; one provides the actual induction motor output states and the other gives the ANN model output states. The total error between the desired and actual state variables is then back propagated to adjust the weights of the ANN model, so that the output of this model tracks the actual output. When the training is completed, the weights of the ANN correspond to the parameters in the actual motor. The estimation and control performance of ANN and multi-AFLC is evaluated by analysis for various operating conditions. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Color Correction Using Back Propagation Neural Network in Film Scanner (필름 스캐너에서 역전파 신경회로망을 이용한 색 보정)

  • 홍승범;백중환
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • A film scanner is one of the input devices for ac acquiring high resolution and high qualify of digital images from the existing optical film. Recently the demand of film scanners have risen for experts of image printing and editing fields. However, due to the nonlinear characteristic of light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction for the scanned digital image is essential in film scanner. In this paper, neural network method is applied for the color correction to CIE L/sup *//a/sup *//b/sup */ color model data converted from RGB color model data. Also a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi is implemented by using the TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color correction rate is 79.8%, which is an improvement of 43.5% than our previous method, polygonal regression method.

  • PDF

Applications of Artificial Neural Networks for Using High Performance Concrete (고성능 콘크리트의 활용을 위한 신경망의 적용)

  • Yang, Seung-Il;Yoon, Young-Soo;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.119-129
    • /
    • 2003
  • Concrete and steel are essential structural materials in the construction. But, concrete, different from steel, consists of many materials and is affected by many factors such as properties of materials, site environmental situations, and skill of constructors. Concrete have two kinds of properties, immediately knowing properties such as slump, air contents and time dependent one like strength. Therefore, concrete mixes depend on experiences of experts. However, at point of time using High Performance Concrete, new method is wanted because of more ingredients like mineral and chemical admixtures and lack of data. Artificial Neural Networks(ANN) are a mimic models of human brain to solve a complex nonlinear problem. They are powerful pattern recognizers and classifiers, also their computing abilities have been proven in the fields of prediction, estimation and pattern recognition. Here, among them, the back propagation network and radial basis function network ate used. Compositions of high-performance concrete mixes are eight components(water, cement, fine aggregate, coarse aggregate, fly ash, silica fume, superplasticizer and air-entrainer). Compressive strength, slump, and air contents are measured. The results show that neural networks are proper tools to minimize the uncertainties of the design of concrete mixtures.

Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks (신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현)

  • Moon, Byoung-Jin;Kim, Kwang-Hee;Lee, Bae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.81-89
    • /
    • 1999
  • Image obtained by incomplete communication always include noise, blur and distortion, etc. In this paper, we propose and apply the new spatial filter algorithm, called an optimal adaptive generalized stack filter(AGSF), which optimizes adaptive generalized stack filter(AGSF) using neural network weight learning algorithm of back-propagation learning algorithm for improving noise removal and edge preservation rate. AGSF divides into two parts: generalized stack filter(GSF) and adaptive multistage median filter(AMMF), GSF improves the ability of stack filter algorithm and AMMF proposes the improved algorithm for reserving the sharp edge. Applied to neural network theory, the proposed algorithm improves the performance of the AGSF using two weight learning algorithms, such as the least mean absolute(LAM) and least mean square (LMS) algorithms. Simulation results of the proposed filter algorithm are presented and discussed.

  • PDF

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

Identification of Void Diameters for Cast-Resin Transformers (몰드변압기의 보이드 결함 크기 판별)

  • Jeong, Gi-woo;Kim, Wook-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.570-573
    • /
    • 2022
  • This paper presents the identification of void diameters for a cast-resin transformer using an artificial neural network (ANN) model. A PD signal was measured by the Rogowski coil sensor which has the planar and thin structures fabricated on a printed circuit board (PCB), and the PD electrode system was fabricated to simulate a PD defect by a void. In addition, void samples with different diameters were fabricated by injecting air in a cylindrical aluminum frame using a syringe during the epoxy curing process. To identify the diameter of void defects, PD characteristics such as the discharge magnitude, pulse count, and phase angle were extracted and back propagation algorithm (BPA) was designed using virtual instrument (VI) based on the Labview program. From the experimental results, the BPA algorithm proposed in this paper has over 90% accurate rate to identify the diameter of void defects and is expected to use reference data of maintenance and replacement of insulation for cast-resin transformers in the on-site PD measurement.

  • PDF

Feature Vector Extraction and Classification Performance Comparison According to Various Settings of Classifiers for Fault Detection and Classification of Induction Motor (유도 전동기의 고장 검출 및 분류를 위한 특징 벡터 추출과 분류기의 다양한 설정에 따른 분류 성능 비교)

  • Kang, Myeong-Su;Nguyen, Thu-Ngoc;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.446-460
    • /
    • 2011
  • The use of induction motors has been recently increasing with automation in aeronautical and automotive industries, and it playes a significant role. This has motivated that many researchers have studied on developing fault detection and classification systems of an induction motor in order to minimize economical damage caused by its fault. With this reason, this paper proposed feature vector extraction methods based on STE (short-time energy)+SVD (singular value decomposition) and DCT (discrete cosine transform)+SVD techniques to early detect and diagnose faults of induction motors, and classified faults of an induction motor into different types of them by using extracted features as inputs of BPNN (back propagation neural network) and multi-layer SVM (support vector machine). When BPNN and multi-lay SVM are used as classifiers for fault classification, there are many settings that affect classification performance: the number of input layers, the number of hidden layers and learning algorithms for BPNN, and standard deviation values of Gaussian radial basis function for multi-layer SVM. Therefore, this paper quantitatively simulated to find appropriate settings for those classifiers yielding higher classification performance than others.