• 제목/요약/키워드: Back propagation neural network

검색결과 1,073건 처리시간 0.027초

전력부하의 유형별 단기부하예측에 신경회로망의 적용 (Application of Neural Networks to Short-Term Load Forecasting Using Electrical Load Pattern)

  • 박후식;문경준;김형수;황지현;이화석;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.8-14
    • /
    • 1999
  • This paper presents the methods of short-term load forecasting Kohonen neural networks and back-propagation neural networks. First, historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Next day hourly load of weekdays and weekend except holidays are forecasted. For load forecasting in summer, max-temperature and min-temperature data as well as historical hourly load date are used as inputs of load forecasting neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation(1994-95).

  • PDF

신경회로망에 의한 정현파 전류 추종 인버어터의 제어 (Sinusoidal Current Tracking Inverter Control with Neural Networks)

  • 배상준;이달해;김동희
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.219-226
    • /
    • 1994
  • Sinusoidal current tracking inverters have substantial advantages in high performance acdrive systems and various control strategies for the inverter have been proposed by several researchers. This paper develops a sinusoidal current tracking inverter with neural networks. The neural network are trained to follow a set of reference current waveforms by erro back propagation algorithm and the trained neural networks are applied to the current control. We compare neural networks method with conventional current control methods (fixed band and sinusiidal band hystersis methods) and simulation results are presented.

  • PDF

적응 뉴럴-퍼지 제어시스템의 설계에 관한 연구 (On Designing an Adaptive Neural-Fuzzy Control System)

  • 김성현;김용호;최영길;심귀보;전홍태
    • 전자공학회논문지A
    • /
    • 제30A권4호
    • /
    • pp.37-43
    • /
    • 1993
  • As an approach to develope the intelligent control scheme, this paper will propose an adaptive neural-fuzzy control scheme. The proposed neural-fuzzy control system, which consists of the Fuzzy-Neural Controller(FNC) and Model Neural Network(MNN), has two important characteristics of adaptation and learning. The error back propagation algorithm has been adopted as a learning technique.

  • PDF

뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계 (Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method)

  • 한성현
    • 한국공작기계학회논문집
    • /
    • 제11권4호
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

전기품질 진단 시스템 개발을 위한 인공 신경망 적용에 관한 연구 (A Study on Power Quality Diagnosis System using Neural NetWorks)

  • 김진수;김영일;김광순;박기주
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1351-1359
    • /
    • 2007
  • In this paper, we have studied the power quality(PQ) diagnosis system with the two methods for PQ diagnosis. One to Apply a regulation value in compliance with mathematics calculation, and the other Automatic identification using Neural network algorithm. Neural network algorithm is used for an automatic diagnosis of the PQ. The regulation proposed by IEEE 1159 Working group is applied for the precision of the diagnosis. In order to divide accurate segmentation, the algorithm for a computer training used the back propagation out of several neural network algorithms. We have configured the proto-type sample by using Labview and a programmed Neural Networks Algorithm using with C. And arbitrary electric Signal generated by OMICRON Company's CMC 256-6 for an efficiency test.

Techniques for Yield Prediction from Corn Aerial Images - A Neural Network Approach -

  • Zhang, Q.;Panigrahi, S.;Panda, S.S.;Borhan, Md.S.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.18-28
    • /
    • 2002
  • Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.

  • PDF

자소 인식 신경망을 이용한 한글 문자 인식에 관한 연구 (A Study on Hanguel Character Recognition using GRNN)

  • 장석진;강선미;김혁구;노우식;김덕진
    • 전자공학회논문지B
    • /
    • 제31B권1호
    • /
    • pp.81-87
    • /
    • 1994
  • This paper describes the recognition of the printed Hanguel(Korean Character) using Neural Network. In this study, Neural network is used in only specific classification. Hanguel is classified globally by using template matching. Neural network is learned using the segmented grapheme. The grapheme of Hanguel is segmented using the structural method. Neural network is constructed, which is corresponded to the kind and the shape of graphemes. Each neural network is multi layer perceptron. The learning algorithm is the modified error back propagation using descending epsilon method. With five test character sets, the recognition rate of 94.95% is obtained.

  • PDF

유도전동기 드라이브의 고성능 제어를 위한 적응 FNN 제어기 (Adaptive FNN Controller for High Performance Control of Induction Motor Drive)

  • 이정철;이홍균;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.569-575
    • /
    • 2004
  • This paper is proposed adaptive fuzzy-neural network(FNN) controller for high performance of induction motor drive. The design of this algorithm based on FNN controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control Performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation. and steady- state accuracy and transient response.

Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller using Tabu search and Neural Network)

  • 손종훈;황기현;김형수;문경준;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.34-36
    • /
    • 2000
  • This paper proposes the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gain of input-output variables of fuzzy logic controller and weights of neural network using Tabu search. Neural network used to tune the output gain of FLC adaptively. We have weights of neural network learned using back propagation algorithm. We performed the nonlinear simulation on an single-machine infinite system to prove the efficiency of the proposed method. The proposed AFLC showed the better performance than PD controller in terms of the settling time and damping effect, for power system operation condition.

  • PDF

FORECASTING OF FINANCIAL TIME SERIES BY A DIGITAL FILTER AND A NEURAL NETWORK

  • Saito, Susumu;Kanda, Shintaro
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.313-317
    • /
    • 2001
  • The approach to predict time series without neglecting the fluctuation in a short period is tried by using a digital FIR filter and a neural network. The differential waveform of the Nikkei average closing price is filtered by the FIR band-pass filter of 101 length. It is filtered into the five frequency bands of 0-1Hz, 1-2Hz, 2-3Hz, 3-4Hz and 4-5Hz by setting the sampling frequency 10Hz. The each filtered waveform is learned and forecasted by the neural network. The neural network of the back propagation method is adopted in the learning the waveform. By inputting the data of 20 days in the past, the prediction of 10 days ahead is carried out. After learning the time series of each frequency band by the neural network, the predicted data far each frequency band are obtained. The predicted waveforms of each frequency band are synthesized to obtain a final forecast. The waveform can be forecasted well as a whole.

  • PDF