• 제목/요약/키워드: Back propagation neural network

검색결과 1,073건 처리시간 0.029초

고급 뉴로퍼지 다항식 네트워크의 해석과 설계 (The Analysis and Design of Advanced Neurofuzzy Polynomial Networks)

  • 박병준;오성권
    • 전자공학회논문지CI
    • /
    • 제39권3호
    • /
    • pp.18-31
    • /
    • 2002
  • 본 연구는 뉴로퍼지 네트워크와 다항식 뉴럴네트워크를 합성한 하이브리드 모델링 구조인 고급 뉴로퍼지 다항식 네트워크(Advanced neurofuzzy polynomial networks ; ANFPN)를 제안한다. 제안된 네트워크 구조는 높은 비선형 규칙 기반 모델로, CI(Computational Intelligence)의 기술, 즉 퍼지집합, 뉴럴네트워크, 유전자 알고리즘에 의해 설계되어진다. 뉴로퍼지 네트워크는 ANFPN 구조의 전반부를, 다항식 뉴럴네트워크는 후반부를 구성한다. ANFPN의 전반부에서, 뉴로퍼지 네트워크는 간략추론, 오류역전파 학습 규칙을 이용한다. 멤버쉽함수의 파라미터, 학습율, 모멘텀 계수는 유전자 최적화를 이용하여 조절된다. ANFPN의 후반부 구조로서 다항식 뉴럴네트워크는 학습을 통해 생성되는(전개되는) 유연한 네트워크 구조이다. 특히 다항식 뉴럴네트워크의 층과 노드 수는 고정되어 있지 않고 동적으로 생성된다. 본 연구에서는, 2가지 형태의 ANFPN 구조를 제안한다. 즉 기본 구조와 변형된 구조이다. 여기서 기본 구조와 변형된 구조는 다항식 뉴럴네트워크 구조의 각 층에서 입력변수의 수와 회귀다항식의 차수에 의존한다. 두 결합 구조의 특징 때문에 공정 시스템의 비선형적인 특성을 고려할 수 있고 보다 우수한 예측능력을 가진 좋은 출력선응을 얻을 수 있게 한다. ANFPN의 유용성과 실용성은 2개의 수치 예제를 통해 논의된다. 제안된 ANFPN은 기존의 모델보다 높은 정밀도와 예측능력을 가진 모델을 생성함을 보인다.

자석검지기를 이용한 차종인식 알고리즘개발 (Development of Vehicle Classification Algorithm Using Magnetometer Detector)

  • 김수희;오영태;조형기;이철기
    • 대한교통학회지
    • /
    • 제17권4호
    • /
    • pp.111-124
    • /
    • 1999
  • 본 논문의 목적은 최근에 개발 중에 있는 단일 자석검지기를 이용한 차종인식 알고리즘을 개발하고, 현장실험을 통한 현장 적용성을 검토하는 것이다. 고속도로에 설치되어 이는 자석검지기를 이용하여 자료를 수집하며 분석에 이용되는 자료는 개별차량에 대하여 자속밀도의 변화에 따른 전압 값을 Digital Data값으로 변환한 수치를 사용하였다. 그 수치를 토대로 각 차량의 점유시간을 파악하여 각 차량의 점유시간동안 파형의 특징을 추출하여 각 특징들을 기초로 하여 각 차량이 나타내는 고유의 파형을 식별하는 Template Matching 방법과 신경망기법, 그리고 이들을 상호 보완한 복합기법을 사용하였다. 검지차량에 따른 다양한 점유시간을 일정크기로 수평성분 정규화하고 이에 따른 자속속밀도의 변화에 의한 전압 값을 차종별로 샘플을 취하여 이동평균방법으로 처리를 한 후 위의 세 가지 기법을 사용하여 검지차량의 파형과 기준 파형을 비교하여 차종을 인식하는 방법으로 알고리즘을 개발하였다. 차종의 분류는 3가지 단계로 하였는데 2종분류, 3종분류, 5종분류로 접근하였다. 그리고 각각의 분류에 따라 정규화 크기 및 이동평균간격을 달리하여 적용하여 보았고 2종분류에서 인식율이 82%수준이다.

  • PDF

The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis

  • Kavitha, Muthu Subash;Asano, Akira;Taguchi, Akira;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제43권3호
    • /
    • pp.153-161
    • /
    • 2013
  • Purpose: To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. Materials and Methods: We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. Results: The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Conclusion: Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

  • Xu, Yi;Chen, Quansheng;Liu, Yan;Sun, Xin;Huang, Qiping;Ouyang, Qin;Zhao, Jiewen
    • 한국축산식품학회지
    • /
    • 제38권2호
    • /
    • pp.362-375
    • /
    • 2018
  • This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

직접부하제어자원으로서 에어컨 주기제어 방법론 개발 (Development of Control Method for Air-Conditioner as the Resources of DLC)

  • 두석배;김정욱;김형중;김회철;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.145-147
    • /
    • 2005
  • This paper presents a methodology for satisfying the thermal comfort of Indoor environment and reducing the summer peak demand power by minimizing the power consumption for an Air-conditioner within a space. KEPCO(Korea Electric Power Corporation) use the fixed duty cycle control method regardless of the indoor thermal environment. This method has disadvantages that energy saying depends on the set-point value of the Air-Conditioner and DLC has no net effects on Air-conditioners if the appliance has a lower operating cycle than the fixed duty cycle. A variable duty cycle estimates the PMV(Predict Mean Vote) at the next step with a predicted temperature and humidity coming from the back propagation neural network model. It is possible to reduce the energy consumption by maintaining the Air-conditioner's OFF state when the PMV lies in the thermal comfort range. The proposed methodology uses the historical real data of Sep. 7th, 2001 from a classroom in seoul to verify the effectiveness of the variable duty cycle method comparing with fixed duty cycle. The result shows that the variable duty cycle reduces the peak demand to 2.6times more than fixed duty cycle and increases the load control ratio by 8% more. Based on the variable duty cycle control algorithm, the effectiveness of DLC is much more improved as compared with the fixed duty cycle.

  • PDF

인간의 정보처리 방법에 기반한 특징추출 및 필기체 문자인식에의 응용 (Feature extraction motivated by human information processing method and application to handwritter character recognition)

  • 윤성수;변혜란;이일병
    • 인지과학
    • /
    • 제9권1호
    • /
    • pp.1-11
    • /
    • 1998
  • 본 논문에서는 인간의 정보처리 과정에 관한 심리학적 실험에 바탕을 두고 인간이 사용하고 있는 것으로 생각되는 특징을 이용하여 이를 문자 인식에 적용하였다. 인간의 경우 화소단위의 정보뿐만 아니라 일정지역의 정보를 함께 처리하는 경향이 있다. 그러므로 일정지역에 대한 정보를 표시하는 영역 특징을 정의하고 정의된 이 영역 특징과 기존의 화소단위 특징들을 결합하였다. 사용한 특징으로는 영역 특징에 기반 한 초등 적 분석결과, 영역특징을 포함한 망 특징, 교차거리와 특징 그리고 기울기 특징들이다. 성능 평가 실험은 필기 한글자모, 숫자 그리고 대소영문자를 대상으로 하였으며, 인식기는 역전과 학습 방법을 이용한 신경망 인식기를 사용하였다. 각각의 인식 결과는 90.27∼93.25%, 98.00% 그리고 79.73∼85.75였다. 영역 특징과 유사한 UDLRH 특징을 대상으로 비교한 결과 전체적으로 1∼2% 정도 인식률 향상이 있었으며 인간이 판단하기에 보다 납득하기 쉬운 오 인식 성향을 보였다.

  • PDF

대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델 (Hybrid metrics model to predict fault-proneness of large software systems)

  • 홍의석
    • 컴퓨터교육학회논문지
    • /
    • 제8권5호
    • /
    • pp.129-137
    • /
    • 2005
  • 설계 명세를 이용하여 결함경향성이 많은 부분을 예측하는 위험도 예측 모델은 대형 통신 시스템 같이 결과 산물이 매우 큰 시스템의 개발비용을 낮추는데 중요한 역할을 하고 있다. 복잡도 메트릭에 기반한 많은 위험도 예측 모델들이 제안되었지만 그들 대부분은 모델 훈련을 위한 훈련 데이터 집합을 필요로 하고, 설계 개체들을 위험 그룹과 비위험 그룹으로 나누는 기능만 지닌 분류 모델들이었다. 본 논문에서는 두가지 형태의 검증된 혼성 메트릭들을 사용하는 새로운 예측 모델 HMM을 제안한다. HMM의 장점은 설계 개체의 위험도를 정량화함으로써 모델 훈련을 위한 훈련 데이터 집합이 필요 없다는 것과 개체 간에 위험도 비교가 가능하다는 것이다. HMM의 유용성을 보이기 위해 여러 내부 특성들과 예측 정확도 비교를 통해 잘 알려진 예측 모델인 역전파 신경망 모델(BPM)과 HMM을 비교하였다.

  • PDF

잡음환경에서 음성-영상 정보의 통합 처리를 사용한 숫자음 인식에 관한 연구 (A Study on Numeral Speech Recognition Using Integration of Speech and Visual Parameters under Noisy Environments)

  • 이상원;박인정
    • 전자공학회논문지CI
    • /
    • 제38권3호
    • /
    • pp.61-67
    • /
    • 2001
  • 본 논문에서는 한국어 숫자음 인식을 위해 음성과 영상 정보를 사용하고, 음성에 사용하는 선형예측계수 알고리즘을 영상에 적용하는 방법을 제안한다. 입력으로 얻어지는 음성신호는 0.95의 매개변수를 통해 고역 신호가 강조되고, 해밍창과 자기상관 분석, Levinson-Durbin 알고리즘에 의해 13차 선형예측계수를 구한다. 마찬가지로, 그레이 영상신호도, 음성의 자기상관 분석, Levinson-Durbin 알고리즘을 사용하여 13차의 2차원 선형예측계수를 구한다, 이러한 음성/영상 신호에 대한 선형예측계수들은 다층 신경회로망에 적용하여 학습이 이루어졌고, 각 레벨의 잡음이 섞인 음성신호를 적용한 결과, 숫자음 '3', '5', '9' 에서 음성만으로 인식한 결과보다 훨씬 좋은 인식결과를 얻을 수 있었다. 결과적으로, 본 연구에서는 영상 신호의 2차원 선형 예측 계수들이 음성인식에 사용될 경우, 특징 추출에 따른 부가적인 알고리즘이 새로 고안될 필요가 없이, 음성특징 계수를 추출하는 방법을 그대로 사용할 수 있으며, 또한 데이터량과 인식율이 잡음 환경에서 보다 향상되는 효율적인 방법을 제시하고 있음을 알 수 있었다.

  • PDF

신경회로망을 이용한 휴대용 전자 혀 시스템의 설계 (Design of E-Tongue System using Neural Network)

  • 정영창;김동진;김정도;정우석
    • 한국산학기술학회논문지
    • /
    • 제6권2호
    • /
    • pp.149-158
    • /
    • 2005
  • 본 논문은 이온 선택성 전극을 모듈화한 MACS를 사용하여 시스템의 크기를 축소할 수 있었고, PDA를 사용함으로써 측정된 데이터를 장소에 구애받지 않고 분석할 수 있는 휴대용 전자혀 시스템을 개발하였다. MACS는 ${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH의 7종의 이온 선택성 전극을 이용하여 구성하였으며, 초기화 및 교정과정과 완충용액에 의한 안정화 과정을 거친 후 MACS로 시료에 대한 각각의 이온선택성 전극의 변화를 측정한다. 이렇게 각 전극으로부터 측정된 데이터를 이용하여 신경회로망 알고리즘으로 측정된 시료의 종류를 구분할 수 있다. 실험은 분류가 어렵다고 알려진 고급양주와 저급양주를 분류하는 것으로 진행되었으며, 성공적이며 우수한 실험 결과를 얻었다 이로부터 사용된 알고리즘이 휴대용 전자혀 시스템에 적절히 사용될 수 있음을 밝혔으며, 실제 휴대용 전자혀 시스템에 간단한 학습에 의해 적용될 수 있을 것으로 생각된다.

  • PDF

지능형 스폿 용접기 개발에 관한 연구 (Study On development of Intelligent spot weld machine)

  • 이희준;이세헌
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.20-20
    • /
    • 2009
  • 저항 점 용접은 1930년대에 Thomson에 의해 방법이 제안된 이후로 자동차, 전자, 항공기, 철도산업등에서 박판 금속(sheet metal)의 접합에 가장 널리 사용되고 있는 공정이다. 특히 자동차 차체와 같이 대부분 박판으로 구성되는 구조물에서는 저항 점 용접의 사용 범위가 매우 넓기 때문에 자동차 산업에서는 가장 기본적인 근본 기술 중의 하나로 인식되고 있다. 보통 자동차 한대를 생산하는데 소요되는 저항 점 용접 타점은 3000~4000개 정도로 자동차 차체 용접 공정의 대부분을 차지하고 있다. 또한 로봇과 연동된 자동화 공정으로 적용되고 있다. 최근의 자동차 차체를 구성하는 금속 재료가 자동차의 경량화, 친화경 소재의 사용자의 요구로 인해 새로운 강판이 사용된다. 자동차의 연비 향상을 위해서 다른 방법보다 자동차의 무게를 감소시키는 것이 가장 효율적이고, 쉽기 때문에 고장력 강판의 사용이 급속하게 증가하고 있다. 뿐만 아니라 차제의 부식성, 내마모성 향상을 위해 도금 처리된 강판의 사용도 활발하게 이루어지고 있다. 최근에 도장 공정 감소를 위해 도금 처리위에 도료 착색을 용이하게 하는 도료의 일부를 금속 표면에 처리된 강판의 개발도 진행되는 등 금속 소재의 변화가 다양하게 진행되고 있다. 이러한 새로운 강종은 기존의 AC 용접이나 DC 용접으로는 용접성 확보에 어려움을 가지고 있어, 새로운 저항 점 용접 공정의 연구 개발이 필요하다. 본 연구에서는 저항 점 용접 공정의 개선을 위해서 인버터 저항 점 용접기에서 용접 공정 중 전류를 제어하기 위한 효율적인 제어기 개발 방법과 개발된 제어기를 바탕으로 용접 중에 용접부의 품질을 예측하여, 용접 전류 및 가압력을 실시간 제어하여 안정적인 용접부의 품질을 갖질 수 있는 지능형 저항 점 용접기의 적응 제어기를 개발하는데 있다.

  • PDF