• Title/Summary/Keyword: Back propagation neural network

Search Result 1,070, Processing Time 0.035 seconds

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

The Structure of Boundary Decision Using the Back Propagation Algorithms (역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구)

  • Lee, Ji-Young
    • The Journal of Information Technology
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

Efficient Iris Recognition using Deep-Learning Convolution Neural Network (딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식)

  • Choi, Gwang-Mi;Jeong, Yu-Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.521-526
    • /
    • 2020
  • This paper presents an improved HOLP neural network that adds 25 average values to a typical HOLP neural network using 25 feature vector values as input values by applying high-order local autocorrelation function, which is excellent for extracting immutable feature values of iris images. Compared with deep learning structures with different types, we compared the recognition rate of iris recognition using Back-Propagation neural network, which shows excellent performance in voice and image field, and synthetic product neural network that integrates feature extractor and classifier.

A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule (신경망 회로를 이용한 필기체 숫자 인식에 관할 연구)

  • Lee, Kye-Han;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF

Self-tuning Nonlinear PID Control Using Neural Network (신경망을 이용한 자기동조 비선형 PID제어)

  • Kim, Dae-Ho;Kim, Jung-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2102-2104
    • /
    • 2001
  • This paper present the strategy of self-tuning nonlinear PID control using neural network. The nonlinear PID controller consists of a conventional PID controller and a neural network compensator. The neural network is trained by back-propagation algorithm. In this paper we propose modified back-propagation algorithm to improve learning speed. The results of simulation show the usefulness of the proposed scheme.

  • PDF

Robust Control of Industrial Robot Based on Back Propagation Algorithm (Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어)

  • 윤주식;이희섭;윤대식;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm (PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어)

  • Jung, Dong-Yean;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Fuzzy Neural Network with Rule Generaton Nased on Back-Propagation Algorithm (학습기능을 갖는 자동 규칙 생성 퍼지 신경망)

  • 정재경;이동윤;정기욱;김완찬
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.191-200
    • /
    • 1996
  • This paper presetns a new fuzzy neural network for fuzzy modeling.The fuzzy neural network is composed of 4 layers and then odes of each layer represent the each step of the if-then fuzzy inference. A heuristic based on the back-propagation algorithm is proposed to ajdust the parameters of the fuzzy nerual network. We prove the feasibility of the network using the experiments on modeling a nonlinear mathematical system and the comparison with previous research.

  • PDF

Application of Neural Networks For Estimating Evapotranspiration

  • Lee, Nam-Ho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1273-1281
    • /
    • 1993
  • Estimation of daily and seasonal evaportranspiration is essential for water resource planning irrigation feasibility study, and real-time irrigation water management . This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration . A neural network was developed to forecast daily evapotranspiration of the rice crop. It is a three-layer network with input, hidden , and output layers. Back-propagation algorithm with delta learning rule was used to train the neural network. Training neural network wasconducted usign daily actural evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity , and pan evaporation . During the training, neural network parameters were calibrated. The trained network was applied to a set of field data not used in the training . The created response of the neural network was in good agreement with desired values. Evaluating the neural networ performance indicates that neural network may be applied to the estimation of evapotranspiration of the rice crop.

  • PDF

A Study on Input Pattern Generation of Neural-Networks for Character Recognition (문자인식 시스템을 위한 신경망 입력패턴 생성에 관한 연구)

  • Shin, Myong-Jun;Kim, Sung-Jong;Son, Young-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.129-131
    • /
    • 2006
  • The performances of neural network systems mainly depend on the kind and the number of input patterns for its training. Hence, the kind of input patterns as well as its number is very important for the character recognition system using back-propagation network. The more input patters are used, the better the system recognizes various characters. However, training is not always successful as the number of input patters increases. Moreover, there exists a limit to consider many input patterns of the recognition system for cursive script characters. In this paper we present a new character recognition system using the back-propagation neural networks. By using an additional neural network, an input pattern generation method is provided for increasing the recognition ratio and a successful training. We firstly introduce the structure of the proposed system. Then, the character recognition system is investigated through some experiments.

  • PDF