• Title/Summary/Keyword: Back pressure test

Search Result 218, Processing Time 0.029 seconds

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

Application of hydraulic cylinder testing to determine the geotechnical properties of earth-filled dams

  • Rodriguez, Roman F.;Nicieza, Celestino G.;Gayarre, Fernando L.;Lopez, Francisco L. Ramos
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.483-498
    • /
    • 2015
  • This article describes a new in-situ load test called the Hydraulic Cylinder Test (HCT) and its application to determine the geotechnical properties of soil-rock mixtures. The main advantages of the test are its easy implementation, speed of execution and low-cost. This article provides a detailed description of the equipment and the test procedure, and examines a case study of its application to determine the geotechnical properties of an earth-filled dam for a tailings pond. The containment dams of the ponds are made from blocks of gypsum and marl, obtained from the excavation of the ponds, mixed in a matrix of sands and clays. The size of the rocks varies between 1 and 30 cm. The HCT is particularly useful for determining the geotechnical properties of this type of soil-rock mixture. Nine HCTs were carried out to determine its strength (c, ${\phi}$) and deformation (B, G) properties. The results obtained were validated using the Bim strength criterion, recently proposed, and some pressure meter tests carried out beforehand. The properties obtained are used to analyze the stability of the dam using computer simulations and a modification to its design is proposed.

Concept Design of High Altitude Simulation Test Facility (고공환경모사 시험설비 구축을 위한 개념설계)

  • Kim, Sang-Heon;Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.75-81
    • /
    • 2006
  • The propulsion system of KSLV-I second stage is engine with high expansion ratio and its starting altitude is high. To verify the performance of engine before the launch in the ground, high altitude test facility to simulate its operating condition is necessary. This material is about the concept design of high altitude simulation test facility for second stage engine. And it will be the basis for the construction of test facility and the test of engine.

  • PDF

P-y Curves from Large Displacement Borehole Testmeter for Railway Bridge Foundation (장변위공내재하시험기를 이용한 철도교 기초의 P-y곡선에 관한 연구)

  • Ryu, Chang-Youl;Lee, Seul;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.836-842
    • /
    • 2011
  • The lateral stability of bridge foundations against train moving load, emergency stopping load, earthquakes, and so on is very important for a railway bridge foundation. A borehole test is much more accurate than laboratory tests since it is possible to minimize the disturbance of ground conditions on the test site. The representative borehole test methods are Dilatometer, Pressuremeter and Lateral Load Tester, which usually provide force-resistance characteristics in elastic range. In order to estimate P-y curves using those methods, the non-linear characteristics of soil which is one of the most important characteristics of the soil cannot be obtained. Therefore, P-y curves are estimated usually using elastic modulus ($E_O$, $E_R$) of lateral pressure-deformation ratio obtained within the range of elastic behavior. Even though the pile foundation is designed using borehole tests in field to increase design accuracy, it is necessary to use a higher safety factor to improve the reliability of the design. A Large Displacement Borehole Testmeter(LDBT) is developed to measure nonlinear characteristics of the soil in this study. P-y curves can be directly achieved from the developed equipment. Comparisons between measured P-y curves the LDBT developed equipment, theoretical methods based on geotechnical investigations, and back-calculated P-y curves from field tests are shown in this paper. The research result shows that the measured P-y curves using LDBT can be properly matched with back-calculated P-y curves from filed tests by applying scale effects for sand and clay, respectively.

  • PDF

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector (고압 천연 가스 인젝터의 분무 특성에 관한 연구)

  • THONGCHAI, SAKDA;KANG, YUJIN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.

The Relationship between the Plantar Center of Pressure Displacement and Dynamic Balance Measures in Hemiplegic Gait (편마비 보행 시 족저압력중심의 이동특성과 동적균형능력의 상관관계 연구)

  • Park, Ji-Won;Nam, Ki-Seok;Back, Mi-Youn
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2005
  • The purpose of this study was to investigate how COP displacement of a hemiplegic foot in stance phase during gait is related to clinical balance measures and the recovery stage in hemiplegic stroke patients. Twenty-eight functionally ambulant hemiplegic patients who had suffered from strokes and thirty age-matched healthy subjects participated in this study. COP parameters were calculated. Clinical balance was measured using the Functional Reach Test (FRT) and Timed Up and Go Test (TUGT). The recovery stage, proprioception, and clonus of the ankles or lower extremities were also measured for physical impairment status. The COPx max-displacement in the medial-lateral side of the stroke patients was significantly longer than that of the normal group (p=.038). The COPy max-displacement in the anterior-posterior side of the stroke patients was significantly shorter than that of normal group (p<.001). Significant differences in the COPx and COPy displacement asymmetry index were found between the two groups (p<.01). The FRT was correlated with the COPx displacement (r=.552) and COPy displacement (r=.765). The TUGT was correlated with the COPy displacement (r=-.588) only. The recovery stage of the lower extremities was correlated with COPy displacement (r=.438). The results of the study indicate that the characteristic of COP displacement in hemiplegic feet in stance phase during gait is related to balance ability and recovery in stroke patients. COP parameters acquired by the mapping of foot pressure in stance phase during gait will provide additional useful clinical information. This information can be used by clinicians to assess objectively the pathologic gait with other diseases and to evaluate the therapeutic effects on gait in stroke patients.

  • PDF

A Study on Selective Catalytic Reduction on Diesel Particulate Filter Catalyst and Coating Technology the Removal of Particulate Matters and NOx for Old Special Cargo Vehicles (노후 특수·화물 차량 PM/NOx 저감을 위한 SDPF 촉매 및 코팅 기술 연구)

  • Jeong, Kwanhyoung;Seo, Philwon;Oh, Hungsuk;Kim, Jongkook;Kang, Soyeon;Kang, Jeongho;Kim, Hyunjun;Shin, Byeongseon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.695-699
    • /
    • 2021
  • In this study, Selective Catalytic Reduction on Diesel Particulate Filter (SDPF) after-treatment system was introduced to simultaneously remove NOx and Particulate Matters (PM) emitted from trucks and special cargo vehicles using old engine. First, in order to select an Selective Catalytic Reduction (SCR) catalyst for SDPF, the de-NOx performance of V/TiO2 and Cu-Zeolite catalysts were compared, and the SCR catalyst characteristics were analyzed through Brunauer Emmett Teller (BET), X-ray Diffraction (XRD) and NH3-TPD (Temperature Programmed Desorption). From the activity test results, the Cu-zeolite catalyst showed the best thermal stability. For optimal coating of SDPF, slurry was prepared according to the target particle size. From the coating stability and back pressure test results of SDPF according to the amount of SCR coating, As a result of comparing coating stability, back pressure, and de-NOx performance by producing A, B, and C samples for each loading amount of the SDPF catalyst, the best results were found in the B sample. The engine dynamometer test was conducted for the optimal SDPF after-treatment system, and the test results satisfied Eu-5 regulations.

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

A Study on Application of the Photo Detector for Electromagnetic Fuel Injection System of DI Diesel Engine (직분식 디젤기관 전자분사계의 광검출기 적용에 관한 연구)

  • Ra, Jin-Hong;Ahn, Soo-Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.38-46
    • /
    • 1999
  • Increasing stringent emissions legislation and requirement of more effective energy used for diesel engine demand the fine control of the fuel injection system. Recently, the electromagnetic fuel injection control system for diesel engine is tried to realize the optimum diesel combustion by the feel back sensing as optical signal of combustion flame. The photo detectors were made for the feed back signal of electromagnetic fuel injection control for small DI diesel engine. Their abilities to detect defining combustion events were examined. By evaluating test results, it was shown that the wider acceptable optical range design of optical probe window face, and selection of installation position and installation method of detector were important point for improving sensing ability. The detector was shown to detect start and end of diffused combustion and maximum point of flame intensity impossible for pressure sensor, and also shown that the maximum point of flame intensity was 75% of accumulated heat release point within the experimental conditions.

  • PDF