• Title/Summary/Keyword: Back electrode

Search Result 182, Processing Time 0.024 seconds

Factors Associated with the Success of Trial Spinal Cord Stimulation in Patients with Chronic Pain from Failed Back Surgery Syndrome

  • Son, Byung-Chul;Kim, Deok-Ryeong;Lee, Sang-Won;Chough, Chung-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.501-506
    • /
    • 2013
  • Objective : Spinal cord stimulation (SCS) is an effective means of treatment of chronic neuropathic pain from failed back surgery syndrome (FBSS). Because the success of trial stimulation is an essential part of SCS, we investigated factors associated with success of trial stimulation. Methods : Successful trial stimulation was possible in 26 of 44 patients (63.6%) who underwent insertion of electrodes for the treatment of chronic pain from FBSS. To investigate factors associated with successful trial stimulation, patients were classified into two groups (success and failure in trial). We investigated the following factors : age, sex, predominant pain areas (axial, limb, axial combined with limbs), number of operations, duration of preoperative pain, type of electrode (cylindrical/paddle), predominant type of pain (nociceptive, neuropathic, mixed), degree of sensory loss in painful areas, presence of motor weakness, and preoperative Visual Analogue Scale. Results : There were no significant differences between the two groups in terms of age, degree of pain, number of operations, and duration of pain (p>0.05). Univariate analysis revealed that the type of electrode and presence of severe sensory deficits were significantly associated with the success of trial stimulation (p<0.05). However, the remaining variable, sex, type of pain, main location of pain, degree of pain duration, degree of sensory loss, and presence of motor weakness, were not associated with the trial success of SCS for FBSS. Conclusion : Trial stimulation with paddle leads was more successful. If severe sensory deficits occur in the painful dermatomes in FBSS, trial stimulation were less effective.

Properties of Silicon Solar Cells with Local Back Surface Field Fabricated by Aluminum-Silicon Eutectic Alloy Paste (알루미늄-실리콘 공융 조성 합금 페이스트를 이용한 국부 후면 전계 태양전지 특성 분석)

  • Choi, Jae-Wook;Park, Sungeun;Bae, Soohyun;Kim, Seongtak;Park, Se Jin;Park, Hyomin;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • Characteristic of aluminum-silicon alloy paste which is applied on the rear side of PERC cell was investigated. The paste was made by aluminum-silicon alloy with eutectic composition to avoid the formation of void which is responsible for the degradation of the open-circuit voltage. Also, the glass frit component of the paste was changed to improve the adhesion of aluminum-silicon paste. We observed the formation of void and local back surface field between aluminum electrode and silicon base by SEM. The light IV, quantum efficiency and reflectance of the solar cells were characterized and compared for each paste.

Contact Resistance Analysis of High-Sheet-Resistance-Emitter Silicon Solar Cells (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

CONTACT RESISTANCE ANALYSIS OF HIGH-SHEET-RESISTANCE-EMITTER SILICON SOLAR CELLS (고면저항 에미터 결정질 실리콘 태양전지의 전면전극 접촉저항 분석)

  • Ahn, Jun-Yong;Cheong, Ju-Hwa;Do, Young-Gu;Kim, Min-Seo;Jeong, Ji-Weon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.390-393
    • /
    • 2008
  • To improve the blue responses of screen-printed single crystalline silicon solar cells, we investigated an emitter etch-back technique to obtain high emitter sheet resistances, where the defective dead layer on the emitter surface was etched and became thinner as the etch-back time increased, resulting in the monotonous increase of short circuit current and open circuit voltage. We found that an optimal etch-back time should be determined to achieve the maximal performance enhancement because of fill factor decrease due to a series resistance increment mainly affected by contact and lateral resistance in this case. To elucidate the reason for the fill factor decrease, we studied the resistance analysis by potential mapping to determine the contact and the lateral series resistance. As a result, we found that the fill factor decrease was attributed to the relatively fast increase of contact resistance due to the dead layer thinning down with the lowest contact resistivity when the emitter was contacted with screen-printed silver electrode.

  • PDF

Light Emission and Plasma Property in the External Electrode Fluorescent Lamps (외부전극 형광램프의 발광 및 플라즈마 특성)

  • Ahn, S.;Lee, M.;Jeong, J.;Kim, J.;Yoo, D.;Koo, J.;Kang, J.;Hong, B.;Choi, E.;Cho, G.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.172-180
    • /
    • 2007
  • A new diagnostics of plasma electron temperature and plasma density is introduced with the observation of the light emission along the tube of external electrode fluorescent lamps. With two different methods operating an external electrode fluorescent lamp of outer diameter 4.0 mm and length 860 mm for the back-light source of 37-inch LCD-TVs, the lighting modes and the plasma properties are investigated. In the center balance operation, the light-emission propagates simultaneously from both sides of the high voltage electrodes to the center of the lamp, while in conventional operation the light-emission propagates from the one end of a high voltage to the other ground electrode. In the operation value of luminance $10,000{\sim}15,000cd/m^2$, the electron plasma thermal energy $(kT_e)$ is about $1.3{\sim}2.7eV$ with the electron density $(n_e)$ is about $(1.6{\sim}3.6){\times}10^{16}m^{-3}$.

Simulation Study of Front-Lit Versus Back-Lit Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The $0.6{\mu}m$ wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (${\tau}$), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type $150{\mu}m$ thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when ${\tau}{\leq}500{\mu}s$, the simulation yielded the solar cell power outputs of $20.7mW{\cdot}cm^{-2}$ and $18.6mW{\cdot}cm^{-2}$, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when ${\tau}$ < $500{\mu}s$, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.

Improvement of Charge Transfer Efficiency of Dye-sensitized Solar Cells by Blocking Layer Coatings (차단막 코팅에 의한 염료 태양전지의 전하전송효율 개선에 관한 연구)

  • Choi, Woo-Jin;Kim, Kwang-Tae;Kwak, Dong-Joo;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.344-348
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~200nm in thickness, as a blocking layer, was deposited by 13.56 MHz radio frequency magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/{I_3}^-$). The presented DSCs were fabricated with working electrode of F:$SnO_2$(FTO) glass coated with blocking $TiO_2$ layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited FTO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells. The, electrochemical impedances of DSCs using this electrode were $R_1$: 13.9, $R_2$: 15.0, $R_3$: 10.9 and $R_h$: $82{\Omega}$. The $R_2$ impedance related by electron movement from nanoporous $TiO_2$ to TCO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 5.97% ($V_{oc}$: 0.75V, $J_{sc}$: 10.5 mA/$cm^2$, ff: 0.75) and approximately 1% higher than general DSCs sample.

All goods Inspection Convergence System for the Development of LCD Molybdenum Pin (LCD 몰리브덴 핀 개발을 위한 전수검사 융합시스템)

  • Lee, Jeongl-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.183-187
    • /
    • 2020
  • The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, In this paper, especially, research on the convergency design for total inspection machine is treated. is treated.

Optical Characteristics of EEFL (External Electrode Fluorescence Lamp) for Large Size BLU (대화면 BLU용 EEFL의 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.74-76
    • /
    • 2006
  • An external electrode fluorescent lamp (EEFL) has an advantage of a long lifetime in the ear1y stages of the study on plasma discharge, interest in the lamp continues. Researches on the operation of external electrode fluorescent lamps have focused mainly on its use of a type of high frequency (MHz). By performing high brightness using a square wave operation method with the low frequency below 100kHz, which is applied to a narrowed tube type lamp that has several mm of lamp diameter, EEFL presented the possibility of using it as a light source for back-lights. However, because EEFL generates plasma using wall charges, which considers the impedance characteristics of glass based on the structural principle in discharge, it can be significant1y affected by frequency. Thus, this study verified the change in the characteristics of electromagnetic fields according to the change in frequency through a Maxwell's electromagnetic field simulation and examined the relationship between the change in the EEFL frequency and brightness by measuring the optical characteristics. In addition, the characteristics of the transformation of energy orbits were verified by investigating the characteristics of the wavelength according to the change in frequency through the OES.

  • PDF

Comparison of Optical Characteristics between CCFL and EEFL in Direct-type Backlight Unit

  • Han, Jeong-Min;Han, Jin-Woo;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.268-273
    • /
    • 2007
  • In this study, It was studied about the luminance characteristics of 17 inch direct-type back light using EEFL(external electrode fluorescent lamp) and CCFL(cold cathode fluorescent lamp). The EEFL has a long life time because the electrode is installed outside of lamp. And it is produced in lower price than conventional CCFL. Moreover, it does not need process of installing internal electrode. However, the EEFL technology has several problems such as difficulty of designing driving inverter and preventing this phenomenon along the skin of lamps. We suggested two types of backlight unit for LCD TV application using the EEFL and the CCFL. We found optimized optical design parameters. We set the optical variation parameters such as lamp height, lamp distance, total thickness, and angles of inner walls. We achieved 7580 nits of center luminance, 82% of luminance uniformity by using 20 lamps of the EEFL and 7297 nits of center luminance, 78% of luminance uniformity by using 16 lamps of the CCFL.