• Title/Summary/Keyword: Back channel

Search Result 363, Processing Time 0.027 seconds

Nonlinear behavior of axially loaded back-to-back built-up cold-formed steel un-lipped channel sections

  • Roy, Krishanu;Ting, Tina Chui Huon;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.233-250
    • /
    • 2018
  • Back-to-back built-up cold-formed steel un-lipped channel sections are used in cold-formed steel structures; such as trusses, wall frames and portal frames. In such built-up columns, intermediate fasteners resist the buckling of individual channel-sections. No experimental tests or finite element analyses have been reported in the literature for back-to-back built-up cold-formed steel un-lipped channel sections and specially investigated the effect of screw spacing on axial strength of such columns. The issue is addressed in this paper. The results of 95 finite element analyses are presented covering stub to slender columns. The finite element model is validated against the experimental tests recently conducted by authors for back-to-back built-up cold-formed steel lipped channel sections. The verified finite element model is then used for the purposes of a parametric study to investigate the effect of screw spacing on axial strength of back-to-back built-up cold-formed steel un-lipped channel sections. Results are compared against the built-up lipped channel sections and it is shown that the axial strength of un-lipped built-up sections are 31% lesser on average than the built-up lipped channel sections. It was also found that the American Iron and Steel Institute (AISI) and the Australian and New Zealand Standards were over-conservative by around 15% for built-up columns failed through overall buckling, however AISI and AS/NZS were un-conservative by around 8% for built-up columns mainly failed by local buckling.

Analysis of the electrical characteristics with back-gate bias in n-channel thin film SOI MOSFET (N-채널 박막 SOI MOSFET의 후면 바이어스에 따른 전기적 특성 분석)

  • 이제혁;임동규;정주용;이진민;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.461-463
    • /
    • 1999
  • In this paper, we have systematically investigated the variation of electrical characteristics with back-gate bias of n-channel SOI MOSFET\\`s. When positive bias is applied back-gate surface is inverted and back channel current is increased. When negative bias is applied back-gate surface is accumulated but it does not affect to the electrical characteristics.

  • PDF

Analytical study of composite beams with different arrangements of channel shear connectors

  • Fanaie, Nader;Esfahani, Farzaneh Ghalamzan;Soroushnia, Soheil
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.485-501
    • /
    • 2015
  • Channels are implemented in composite beams as shear connectors in two arrangements, face to face and back to back. No relevant explanation is found in the design codes to clarify the preference of the mentioned arrangements. Besides, the designers do not have a common opinion on this subject; i.e., some recommend the face to face and others, back to back status. In this research, channel shear connectors in composite beams are studied analytically for both arrangements using ABAQUS software. For this purpose, they have been modeled in simply supported beams in the arrangements of face to face and back to back; their effects on the crack initiation load of concrete slabs were monitored. The stiffness values of composite beams were also compared in the two arrangements using force-displacement curve; the results are relatively the same in both cases. Furthermore, the effects of compressive strength of concrete, channel size, length and spacing of channels as well as steel type of channels on the performance of composite beams have been investigated. According to the results obtained in this research, the face to face status shows better performance in comparison with that of back to back, considering the load of concrete fracturing.

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Electrical sensing of SOI nano-wire BioFET by using back-gate bias (Back-gate bias를 이용한 SOI nano-wire BioFET의 electrical sensing)

  • Jung, Myung-Ho;Ahn, Chang-Geun;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.354-355
    • /
    • 2008
  • The sensitivity and sensing margin of SOI(silicon on insulator) nano-wire BioFET(field effect transistor) were investigated by using back-gate bias. The channel conductance modulation was affected by doping concentration, channel length and channel width. In order to obtain high sensitivity and large sensing margin, low doping concentration, long channel and narrow width are required. We confirmed that the electrical sensing by back-gate bias is effective method for evaluation and optimization of bio-sensor.

  • PDF

A Study on the Transconductance Change of submicron LDD NMOSFETs under back bias (submicron LDD NMOSFET에서 back bias에 따른 transconductance 변화에 대한 연구)

  • Won, Myoung-Kyu;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.875-878
    • /
    • 1999
  • In this paper, we measured and simulated the transconductance change of submicron LDD NMOSFETs due to back bias under various channel length, temperature and substrate doping conditions. As back bias is increased, the mobility will decrease and g$_{m}$ decreases according to a conventional model. But as the channel length is reduced, this phenomenon is inverted and g$_{m}$ increases in the submicron region. This can be explained by analyzing the electron quasi Fermi potential in the channel. And the empirical formulae which show the g$_{m}$ change were induced. These will be helpful to enhance the efficiency and precision of IC design.esign.

  • PDF

A Study on Threshold Voltage and I-V Characteristics by considering the Short-Channel Effect of SOI MOSFET (SOI MOSFET의 단채널 효과를 고려한 문턱전압과 I-V특성 연구)

  • 김현철;나준호;김철성
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.8
    • /
    • pp.34-45
    • /
    • 1994
  • We studied threshold voltages and I-V characteristics. considering short channel effect of the fully depleted thin film n-channel SOI MOSFET. We presented a charge sharing model when the back surface of short channel shows accumulation depletion and inversion state respectively. A degree of charge sharing can be compared according to each of back-surface conditions. Mobility is not assumed as constant and besides bulk mobility both the mobility defined by acoustic phonon scattering and the mobility by surface roughness scattering are taken into consideration. I-V characteristics is then implemented by the mobility including vertical and parallel electric field. kThe validity of the model is proved with the 2-dimensional device simulation (MEDICI) and experimental results. The threshold voltage and charge sharing region controlled by source or drain reduced with increasing back gate voltage. The mobility is dependent upon scattering effect and electric field. so it has a strong influence on I-V characteristics.

  • PDF

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.

Dependence of Electrical Characteristics on Back Bias in SOI Device (SOI(Silicon-on-Insulator) 소자에서 후면 Bias에 대한 전기적 특성의 의존성)

  • 강재경;박재홍;김철주
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.43-44
    • /
    • 1993
  • In this study SOI MOSFET model of the structure with 4-terminals and 3-interfaces is proposed. An SOI MOSFET is modeled with the equivalent circuit considered the interface capacitances. Parameters of SOI MOSFET device are extracted, and the electrical characteristics due to back-bias change is simulated. In SOI-MOSFET model device we describe the characteristics of threshold voltage, subthreshold slope, maxium electrical field and drain currents in the front channel when the back channel condition move into accmulation, depletion, and inversion regions respectively.

  • PDF

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET (Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석)

  • Na, Min-Ki;Han, In-Shik;Choi, Won-Ho;Kwon, Hyuk-Min;Ji, Hee-Hwan;Park, Sung-Hyung;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.