• 제목/요약/키워드: Back Propagation training algorithm

검색결과 185건 처리시간 0.028초

신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용- (Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm-)

  • 이남호;정하우
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구 (The Structure of Boundary Decision Using the Back Propagation Algorithms)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

EFFECTS OF RANDOMIZING PATTERNS AND TRAINING UNEQUALLY REPRESENTED CLASSES FOR ARTIFICIAL NEURAL NETWORKS

  • Kim, Young-Sup;Coleman Tommy L.
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2002
  • Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.

  • PDF

오류역전파 알고리즘을 이용한 사출성형 금형 냉각회로 최적화 (Injection Mold Cooling Circuit Optimization by Back-Propagation Algorithm)

  • 이병옥;태준성;최재혁
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.430-435
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. The cooling circuit optimization problem that was once solved by a response surface method with 4 design variables. It took too much time for the optimization as an industrial design tool. It is desirable to reduce the optimization time. Therefore, we tried the back-propagation algorithm of artificial neural network(BPN) to find an optimum solution in the cooling circuit design in this research. We tried various ways to select training points for the BPN. The same optimum solution was obtained by applying the BPN with reduced number of training points by the fractional factorial design.

  • PDF

오류역전파 알고리즘을 이용한 최적 사출설형 냉각시스템 설계 (Optimum Cooling System Design of Injection Mold using Back-Propagation Algorithm)

  • 태준성;최재형;이병옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2009
  • The cooling stage greatly affects the product quality in the injection molding process. The cooling system that minimizes temperature variance in the product surface will improve the quality and the productivity of products. In this research, we tried the back-propagation algorithm of artificial neural network to find an optimum solution in the cooling system design of injection mold. The cooling system optimization problem that was once solved by a response surface method with 4 design variables was solved by applying the back-propagation algorithm, resulting in a solution with a sufficient accuracy. Furthermore the number of training points was much reduced by applying the fractional factorial design without losing solution accuracy.

  • PDF

신경망 회로를 이용한 필기체 숫자 인식에 관할 연구 (A Study Of Handwritten Digit Recognition By Neural Network Trained With The Back-Propagation Algorithm Using Generalized Delta Rule)

  • 이규한;정진현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2932-2934
    • /
    • 1999
  • In this paper, a scheme for recognition of handwritten digits using a multilayer neural network trained with the back-propagation algorithm using generalized delta rule is proposed. The neural network is trained with hand written digit data of different writers and different styles. One of the purpose of the work with neural networks is the minimization of the mean square error(MSE) between actual output and desired one. The back-propagation algorithm is an efficient and very classical method. The back-propagation algorithm for training the weights in a multilayer net uses the steepest descent minimization procedure and the sigmoid threshold function. As an error rate is reduced, recognition rate is improved. Therefore we propose a method that is reduced an error rate.

  • PDF

인공신경망 이론을 이용한 위성영상의 카테고리분류 (Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks)

  • 강문성;박승우;임재천
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

Implementation of Speed Sensorless Induction Motor drives by Fast Learning Neural Network using RLS Approach

  • Kim, Yoon-Ho;Kook, Yoon-Sang
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.293-297
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.

  • PDF

Random Tabu 탐색법을 이용한 신경회로망의 고속학습알고리즘에 관한 연구 (Fast Learning Algorithms for Neural Network Using Tabu Search Method with Random Moves)

  • 양보석;신광재;최원호
    • 한국지능시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.83-91
    • /
    • 1995
  • 본 연구에서는 종래에 학습법으로 널리 이용되고 있는 역전파학습법의 문제점으로 지적되어 온 학습에 많은 시간이 걸리는 점과 국소적 최적해에 해가 수렴하여 오차가 충분히 작게 되지 않는 등의 문제점을 해결하기 위해, Hu에 의해 고안된 random tabu 탐색법을 이용하여 신경회로망의 연결강도를 최적화하는 학습알고리즘을 새로이 제안하였다. 그리고 이 방법을 배타적 논리합 문제에 적용하여 기존의 역전파학습법과 학습상수 $, $에 tabu탐색법을 이용한 결과와 비교 검토하여 본 방법이 국소적 최적해에 수렴하지 않고 수렴정도를 개선할 수 있음을 확인하였다.

  • PDF

패리티 판별을 위한 유전자 알고리즘을 사용한 신경회로망의 학습법 (Learning method of a Neural Network using Genetic Algorithm for 3 Bit Parity Discrimination)

  • 최재승;김정화
    • 전자공학회논문지CI
    • /
    • 제44권2호
    • /
    • pp.11-18
    • /
    • 2007
  • 신경회로망의 학습에 널리 사용되고 있는 오차역전파 알고리즘은 최급하강법을 기초로 하고 있기 때문에 초기값에 따라서는 극소값에 떨어지거나, 신경회로망을 학습시킬 때 중간층 유닛수를 얼마로 설정하는 등의 문제점이 있다. 따라서 이러한 문제점을 해결하기 위하여, 본 논문에서는 3비트 패리티 판별을 위하여 신경회로망의 학습에 교차법, 돌연변이법에 새로운 기법을 도입한 개량형 유전적 알고리즘을 제안한다. 본 논문에서는 세대차이, 중간층 유닛수의 차이, 집단의 개체수의 차이에 대하여 실험을 실시하여, 본 방식이 학습 속도의 면에서 유효하다는 것을 나타낸다.