• Title/Summary/Keyword: Bacillus thuringiensis sporulation

Search Result 15, Processing Time 0.023 seconds

Immunological Analysis of Antigenic Variation of Bacillus thuringiensis subsp. sotto during Sporulation and Crystallization

  • Cho, Jae Min;Gi Bum Nam;Soon Bok Hong;Myung Hwan Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.359-363
    • /
    • 1995
  • The antigenic variation of B. thuringiensis subsp. satto have been investigated for 120 hours during sporulation and crystallization by using SDS-PAGE and Western blot. Most antigens of a vegetative cell were found to disappear as it was in sporulation and crystallization, but protein antigens of 46, 29, 27, and 21 kDa continued to be expressed. The new protein bands of 293, 138, 119, 75, and 68 kDa appeared on days 2 through 5 in modified GYS medium. They were thought to be involved in sporulation and crystallization. The protein of 138 kDa was found to be a major protein of both crystal and spore. The expression patterns were immunologically analyzed by Western blot. The polyclonal antisera against the intact crystal showed strong immunoreactivity to proteins with molecular masses of 293, 138, 68, and 46 kDa. The polyclonal antisera against the spore recognized proteins of 293, 138, 68, and 46 kDa. Both crystals and spores appeared to express the common protein antigens.

  • PDF

Physiological and Nutritional Factors for Efficient Sporulation and Toxin Formation in Bacillus tthuringiensis

  • 이은희;반재구;김정일
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.522.2-522
    • /
    • 1986
  • In order to optimally induce sporulation and toxin formation in Bacillus thuringiensis, exhaustion of specific nutrients as well as resuspension experiments were tried. Sporulation and toxin formation was most abunduntly occurred when the growth was limited by carbon source. It was also occurred in a resuspension medium containing only distilled water. Various environmental and physiological factors affecting the efficiencies of spore and toxin formation were examined in chemically defined media. As a result of these studies, a batch fermentation resulted in higher spore and toxin yield than ever reported

  • PDF

Purtification of Parasporal Protein Crystals of Bacillus thuringiensis (Bacillus thuringiensis의 내독소 단백질의 분리1)

  • Kim, Yeong-Hun;Kim, Sang-Hyeon;Gang, Seok-Gwon
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.1
    • /
    • pp.32-36
    • /
    • 1991
  • The study has been carried out to acquire some basic informations about Bacillus thuringiensis for developing the microbial pesticide. Three strains of Bacillus thuringiensis var. Kurstaki, dendrolimus and aizawai, were used in the experiments as follows. Growth characteristics of each strain were examined and parasporal protein crystals were isolated from the mixtures of spores and protein crystals by the new method of centrifugation in two-layer cushion of Renograffin using a fixed angle rotor. The results are as follows. 1. No difference was shown in growth characterestics among three strains of B. thuringiensis. In growth curves, all strains reached to exponential phase by 2 hr and stationary phase by 7-8 hr after inoculation. 2. The pH of the culture media during exponential growth stage decreased about 1.4 of a pH unit at the beginning of sporulation, but recovered during the early stage of sporulation and then remained nearly constant during the later stage. 3. As 10$m\ell$ sample was applied to two-layer cushion of Renograffin and then centrifuged for 1hr at 27,000g a fixed angle rotor, the purity and recovery ratio was 99.9% and 5.8%, respectively. It has been shown that the new method for the isolation of parasporal protein crystals was more efficient than any from the estabilished methods.

  • PDF

Growth and Production of Insecticidal Crystal Proteins of Bacillus thuringiensis as Affected by Carbon Sources (Bacillus thuringiensis 생장과 살충성 결정단백질 생성에 대한 탄소원의 영향)

  • Kim, Moo-Key;Ahn, Byung-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.177-182
    • /
    • 1996
  • Effects of 14 carbohydrates supplied as carbon sources on cell growth and sporulation of, and the production of insecticidal crystal proteins by Bacillus thuringiensis strains were investigated in liquid cultures. Strains grew well in media containing any one of the 14 carbohydrates supplied, reaching maximum cell densities of $10^7{\sim}10^8\;cells/ml$ in 16.7 to 22 hours after inoculation depending on the strain. Spores first appeared in 16.7 to 24.7 hours after inoculation, and 80% sporulation was reached in 28 to 51.3 hours after inoculation depending on the strain. No change in pH of media was observed after cell multiplication. The production of total protein was highest when supplied with sucrose and was lowest with starch. More insecticidal crystal proteins were produced when supplied with glucose, lactose, maltose, or sucrose. The amount of insecticidal crystal proteins produced by the strains was proportional to that of the total protein. The relative amount of individual insecticidal crystal protein species produced by B.t. kurstaki and B.t. israelensis was not influenced by the carbohydrates supplied.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

Bacillus thuringiensis 내에서 안정한 벡타를 이용한 cry1C 유전자의 발현

  • Choi, Soo-Keun;Oh, Keun-Hee;Kim, Jeong-Il;Park, Seung-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.6
    • /
    • pp.566-570
    • /
    • 1997
  • During sporulation, Bacillus thuringiensis strains produce crystals consist of toxin proteins highly specific against insect pests. Their host specificities are desirable from a standpoint of environmental safety, but also limit market potential. Thus, development of improved Bacillus thuringiensis strains having broad host spectrum will contribute to increase its use. For the construction of Bacillus thuringiensis strain having broad host spectrum, we cloned cry1C gene encoding a toxin protein highly toxic against Spodoptera exigua from a B. thuringiensis isolate and constructed two recombinant plasmids, pUBClC and plC60. The plasmid PUBC1C has a replication origin of the natural plasmid pBC16 from B. cereus which is closely related species to B. thuringiensis, and the pBC16 was known to be replicated by rolling-circle mechanism. The plasmid pIC60 has a replication origin of a resident 60 MDa plasmid from B. thuringiensis subsp. kurstaki HD263, and it is believed that the pIC60 is replicated in a theta mode. The two plasmids were introduced into B. thuringiensis subsp. kurstaki cryB strain, and the transformed strains produced well-shaped bipyramidal crystals. We confirmed the expression of the cry1C gene by SDS-PAGE, and Western blotting. By investigating the segregational stability, it was found that the plasmid pIC60 is more stable than the pUBC1C.

  • PDF

Characterization of Bacillus thuringiensis Having Insecticidal Effects Against Larvae of Musca domestica

  • Oh, Se-Teak;Kim, Jin-Kyu;Yang, Si-Yong;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1057-1062
    • /
    • 2004
  • The entomopathogenic bacterium Bacillus thuringiensis is the most widely used biopesticide. Insecticidal proteins, coded by genes located in plasmids, form typical parasporal, crystalline inclusions during sporulation. We isolated a Bacillus thuringiensis strain having insecticidal activity against larvae of the house fly (M. domestica) from the soils at a pig farm in Korea, and named it Bacillus thuringiensis SM. The culture filtrate from Bacillus thuringiensis SM showed strong lethality (83.3%) against M. domestica larvae. The parasporal crystal is enclosed within the spores' outermost envelope, as determined by transmission electron microscopy, and exhibited a bipyramidal form. The crystal proteins of strain SM consisted of five proteins with molecular weights of approximately ~130, ~80, ~68, ~42, and ~27 kDa on a 10% SDS-PAGE (major band, a size characteristic of Cry protein). Examination of antibiotic resistance revealed that the strain SM showed multiple resistant. The strain SM had at least three different plasmids with sizes of 6.6, 9.3, and 54 kb. Polymerase chain reactions (PCRs) revealed the presence of cry1, cry4A2, and cry11A1 genes in the strain SM. The cry1 gene profile of the strain SM appeared in the three respective products of 487 bp [cry1A(c)], 414 bp [cry1D], and 238 bp [cry1A(b)]. However, the strain SM has not shown the cry4A2 md cry11A1 genes. In in vivo toxicity assays, the strain SM showed high toxicity on fly larvae (M. domestic) [with $LC_{50}$ of 4.2 mg/ml, $LC_{90}$ of 8.2 mg/ml].

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

Production of Microbial Pesticides by Soybean Curd Waste-water in Bacillus thuringiensis subsp. kurstaki HD-1 (Bacillus thuringiensis kurstaki HD-1 유래 미생물살충제 생산을 위한 두부공업폐수의 이용)

  • Ok, Min;Kim, Dae-Jin;Lee, Young-Chun;Choi, Yong-Lak;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.369-373
    • /
    • 2002
  • The waste-water from the industry for production of a soybean curd (the soybean curd waste-water) was investigated to use for the substrate to produce the endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 used as one of well known microbial pesticides. The pH of the soybean curd waste-water was 9.8 and its chemical oxygen demand (COD), total nitrogen (TN) and phosphate (TP) were 276.0, 71.1 and 5.5mg/$\ell$, respectively. The higher was the concentration of the soybean curd waste-water in the medium, the more endotoxin was produced. Maximal sporulation occurred at which concentration of $K_2$HPO$_4$in the medium supplied with the soybean curd waste-water was 1% (w/v). Production of the endotoxin with the optimized medium supplied with the soybean curd waste-water was 1.5 times higher than that without the soybean curd waste-water. The soybean curd waste-water was found to be suitable substrate for production of the endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1.