• Title/Summary/Keyword: Bacillus subtilis DB104

Search Result 15, Processing Time 0.031 seconds

Bacterial Surface Display of Levansucrase of Zymomonas mobilis Using Bacillus Subtilis Spore Display System (고초균 포자를 이용한 Zymomonas mobilis 유래의 levansucrase 표면 발현)

  • Kim, June-Hyung;Choi, Soo-Keun;Jung, Heung-Chae;Pan, Jae-Gu;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.243-247
    • /
    • 2011
  • Using Bacillus subtilis spore display system, with cotG as an anchoring motif, levansucrase from Zymomonas mobilis, was displayed on the outer surface of Bacillus subtilis spore. Flow cytometry of DB104 (pSDJH-cotG-levU) spore, proved the surface localization of CotG-LevU fusion protein on the spore compared to that of DB104. Enzymatic activity of DB104 (pSDJH-cotG-levU) spore showed more than 1.5 times higher levansucrase specific activity compared to that of the host spore, which is a remarkable increase of enzymatic activity considering the existence of sacA (sucrase) and sacB (levansucrase) in the Bacillus subtilis chromosome. The spore integrity, revealed by sporulation frequency test after heat and lysozyme treatment of spore, did not changed at all in spite of the CotG-LevU fusion protein incorporation into the spore coat layer during spore formation process. These data prove again that Bacillus subtilis spore could be considered as good live immobilization vehicle for efficient bioconversion process.

Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis Spores

  • Park, Jong-Hwa;Kim, Wooil;Lee, Yong-Suk;Kim, June-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1383-1390
    • /
    • 2019
  • In this study, we expressed cotA laccase from Bacillus subtilis on the surface of B. subtilis spores for efficient decolorization of synthetic dyes. The cotE, cotG, and cotY genes were used as anchoring motifs for efficient spore surface display of cotA laccase. Moreover, a $His_6$ tag was inserted at the C-terminal end of cotA for the immunological detection of the expressed fusion protein. Appropriate expression of the CotE-CotA (74 kDa), CotG-CotA (76 kDa), and CotY-CotA (73 kDa) fusion proteins was confirmed by western blot. We verified the surface expression of each fusion protein on B. subtilis spore by flow cytometry. The decoloration rates of Acid Green 25 (anthraquinone dye) for the recombinant DB104 (pSDJH-EA), DB104 (pSDJH-GA), DB104 (pSDJH-YA), and the control DB104 spores were 48.75%, 16.12%, 21.10%, and 9.96%, respectively. DB104 (pSDJH-EA) showed the highest decolorization of Acid Green 25 and was subsequently tested on other synthetic dyes with different structures. The decolorization rates of the DB104 (pSDJH-EA) spore for Acid Red 18 (azo dye) and indigo carmine (indigo dye) were 18.58% and 43.20%, respectively. The optimum temperature for the decolorization of Acid Green 25 by the DB104 (pSDJH-EA) spore was found to be $50^{\circ}C$. Upon treatment with known laccase inhibitors, including EDTA, SDS, and $NaN_3$, the decolorization rate of Acid Green 25 by the DB104 (pSDJH-EA) spore decreased by 23%, 80%, and 36%, respectively.

Novel sinIR promoter for Bacillus subtilis DB104 recombinant protein expression system

  • Ji-Su Jun;Min-Joo Kim;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.128-137
    • /
    • 2023
  • Transcriptome analysis revealed that the sinR gene encoding a transition-state regulator of Bacillus pumilus, genetically close to B. subtilis, was expressed at high levels during growth. The sinR gene is the second gene of the sinIR operon consisting of three promoters and two structural genes in B. subtilis. This study used the sinIR promoter of B. subtilis DB104 to construct a recombinant protein expression system. First, the expression ability depending on the number of sinIR promoter was investigated using enhanced green fluorescent protein (eGFP). The expression level of eGFP was slightly higher when using two promoters (Psin2) than using original promoters. The Psin2 promoter was further engineered by modifying the repressor binding site and -35 and -10 regions. Shine-Dalgarno (SD) sequence of the sinI gene was modified to the consensus sequence. Finally, combining the engineered Psin2 promoter with the modified SD sequence increased the expression level of eGFP by about 13.4-fold over the original promoter. Our results suggest that the optimized sinIR promoter could be used as a novel tool for recombinant protein expression in B. subtilis.

Characterization of a PyrR-deficient Mutant of Bacillus subtilis by a Proteomic Approach (프로테옴 분석에 의한 Bacillus subtilis PyrR 돌연변이체의 특성)

  • Seul, Keyung-Jo;Cho, Hyun-Soo;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2011
  • The Bacillus subtilis pyrimidine biosynthetic (pyr) operon encodes all of the enzymes for the de novo biosynthesis of Uridine monophosphate (UMP) and additional cistrones encoding a uracil permease and the regulatory protein PyrR. The PyrR is a bifunctional protein with pyr mRNA-binding regulatory funtion and uracil phosphoribosyltransferase activity. To study the global regulation by the pyrR deletion, the proteome comparison between Bacillus subtilis DB104 and Bacillus subtilis DB104 ${\Delta}$pyrR in the minimal medium without pyrimidines was employed. Proteome analysis of the cytosolic proteins from both strains by 2D-gel electrophoresis showed the variations in levels of protein expression. On the silver stained 2D-gel with an isoelectric point (pI) between 4 and 10, about 1,300 spots were detected and 172 spots showed quantitative variations in which 42 high quantitatively variant proteins were identified. The results showed that production of the pyrimidine biosynthetic enzymes (PyrAA, PyrAB, PyrB, PyrC, PyrD, and PyrF) were significantly increased in B. subtilis DB104 ${\Delta}$pyrR. Besides, proteins associated carbohydrate metabolism, elongation protein synthesis, metabolism of cofactors and vitamins, motility, tRNA synthetase, catalase, ATP-binding protein, and cell division protein FtsZ were overproduced in the PyrR-deficient mutant. Based on analytic results, the PyrR might be involved a number of other metabolisms or various phenomena in the bacterial cell besides the pyrimidine biosynthesis.

Cloning and Expression of a Yeast Cell Wall Hydrolase Gene (ycl) from Alkalophilic Bacillus alcalophilus subsp. YB380

  • Ohk, Seung-Ho;Yeo, Ik-Hyun;Yu, Yun-Jung;Kim, Byong-Ki;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.508-514
    • /
    • 2001
  • A stuructural gene (ycl) encoding novel yeast cell wall hydrolase, YCL, was cloned from alkalophilic Bacillus alcalophilus subsp. YB380 by PCR, and transformed into E. coli JM83. Based on the N-terminal and internal amino acid sequences of the enzyme, primers were designed for PCr. The positive clone that harbors 1.8 kb of the yeast cell wall hydrolase gene was selected by the colony hybridization method with a PCR fragment as a probe. According to the computer analysis, this gene contained a 400-base-paired N-terminal domain of the enzyme. Based on nucletide homology of the cloned gene, a 850 bp fragment was amplified and the C-terminal domain of the enzyme was sequenced. With a combination of the two sequences, a full nucleotide sequence for YCL was obtained. This gene, ycl, consisted of 1,297 nucleotides with 27 nucleotides with 27 amino acids of signal sequence, 83 redundant amino acids of prosequence, and 265 amino acids of the mature protein. This gene was then cloned into the pJH27 shuttle vector and transformed into the Bacillus subtilis DB104 to express the enzyme. It was confirmed that the expressed cell wall hydrolase that was produced by Bacillus subtilis DB104 was the same as that of the donor strain, by Western blot using polyclonal antibody (IgY) prepared from White Leghorn hen. Purified yeast cell wall hydrolase and expressed recombinant protein showed a single band at the same position in the Western blot analysis.

  • PDF

Expression of a Bacillus subtilis Endoglucanase in Protease-Deficient Bacillus subtilis Strains

  • Yang, Mi-Jeong;Jung, Sun-Hwa;Shin, Eun-Sun;Kim, Jung-Ho;Yun, Han-Dae;Wong, Sui-Lam;Kim, Ho-On
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.430-434
    • /
    • 2004
  • Three extracellular protease-deficient Bacillus subtilis strains were transformed with the plasmid pCK98 containing the endo-$\beta$-1,4-glucanase (Eng) gene of B. subtilis BSE616. The three transformants, B. subtilis DB104 (pCK98), WB600 (pCK98) and WB700 (pCK98), produced the same high level of enzyme activity and showed similar patterns of cell growth and enzyme production. When B. subtilis DB 104 (pCK98), a two-extracellular protease deficient strain, was cultured for 22 h, almost all the secreted enzyme was found to be in the completely cleaved form by both activity staining and Western blotting studies. B. subtilis WB600 (pCK98), a six-extracellular protease-deficient strain, produced a partially cleaved form in addition to the intact form of the enzyme, although the degree of internal cleavage of the enzyme was greatly reduced. With B. subtilis WB700 (pCK98), a seven-extracellular protease-deficient strain, almost all the enzyme was produced as the intact uncleaved form. This study illustrates that a role of the V pr protease is to degrade foreign proteins produced in B. subtilis and WB700 is a suitable expression system for producing the intact form of the Eng and other foreign proteins that may lose at least part of their efficacy due to internal proteolytic cleavage.

Overproduction and Secretion of $\beta$-Glucosidase in Bacillus subtilis

  • Kim, Jeong-Hyun;Lee, Baek-Rak;Moo, young-Pack
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • Overproduction of intracellular ${\beta}$-glucosidase was attempted by modifying the promoter region of a ${\beta}$-glucosidase gene cloned from Cellulomonas fimi and expressing it in Bacillus subtilis DB 104. A strong engineered promoter, BJ27UΔ88, was fused to the ${\beta}$-glucosidase gene after removing its native promoter. An effective Shine-Dalgamo sequence (genel0 of phage T7) was inserted between the promoter and the ${\beta}$-glucosidase structural gene. The modified gene was overexpressed in B. subtilis and produced 1121.5 units of ${\beta}$-glucosidase per mg protein which is about $12\%$ of total intracellular protein. Secretion of overproduced intracellular ${\beta}$-glucosidase was attempted by using the signal sequence of the Bacillus endoglucanase gene as well as an in-frame hybrid protein of endoglucanase. The hybrid protein was normally secreted into the culture medium and still retained ${\beta}$-glucosidase activity.

  • PDF

Cloning and Expression of Inulin Fructotransferase Gene of Arthrobacter sp. A-6 in Escherichia coli and Bacillus subtilis

  • Kim, Hwa-Young;Kim, Chan-Wha;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.275-280
    • /
    • 2000
  • The inulin fructotransferse (depolymerizing) (IFTase, EC 2.4.1.93) gene of Arthrobacter sp. A-6 was cloned and expressed in Escherichia coli and Bacillus subtilis. The IFTase gene consisted of an ORF of 1.311 nucleotides encoding a polypeptide of 436 amino acids containing a signal peptide of 31 amino acids in the N-terminus. The molecular mass of the IFTase based on the nucleotide sequence was calculated to be 46.116 Da. The recombinant E. coli $DH5{\alpha}$ cells expressing the Arthrobacter sp. A-6 IFTase gene produced most of the IFTase intracelularly. In contrast, the recombinant B. subtilis DB 104 carrying the IFTas gene on a B. subtilis-E. Coli expression vector secreted the IFTase into the culture fluid efficiently.

  • PDF

Secretory Overexpression of β-Agarase in Bacillus subtilis and Antibacterial Activity of Enzymatic Products (Bacillus subtilis에서 β-agarase의 분비형 과발현 및 효소분해산물의 항균활성)

  • Jang, Min-Kyung;Lee, Ok-Hee;Yoo, Ki-Hwan;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1601-1604
    • /
    • 2007
  • The gene for ${\beta}-agarase$ of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis DB104, 168 and ISW1214 strains for mass-production. Among 3 host strains, B. subtilis ISW1214 secreted the highest amount of recombinant ${\beta}-agarase$ with a specific activity of 201 U/mg and 360 mg of protein into culture broth. This was approximately 130-fold higher than the production in E. coli as an expression host. Recombinant enzyme produced neoagarooligosaccharides such as neoagarohexaose, neoagarotetraose, and neoagarobiose from agar. Produced neoagarooligosaccharides showed antibacterial activities against gram-negative E. coli and gram-positive B. subtilis at a concentration of 1.5%. These data suggest that neoagarooligosaccharides could be an useful preservative for food industry.

High-Level Expression and Secretion of Bacillus pumilus Lipase B26 in Bacillus subtilis Chungkookjang

  • Lee, Mi-Hwa;Song, Jae-Jun;Choi, Yoon-Ho;Hong, Seung-Pyo;Rha, Eu-Gene;Kim, Hyung-Kwoun;Lee, Seung-Goo;Poo, Har-Young;Lee, Sang-Chul;Seu, Young-Bae;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.892-896
    • /
    • 2003
  • High-level expression of the lipase B26 gene from Bacillus pumilus was achieved using Bacillus subtilis Chungkookjang isolated from the Korean traditional fermented bean paste, Chungkookjang. For the secretory production of recombinant lipase B26 in a Bacillus host system, pLipB26 was constructed by ligating the lipase B26 gene into the recently designed Escherichia coli-Bacillus shuttle vector, pLipSM, and that was then transformed into B. subtilis Chungkookjang. Among the various vector, medium, and host combinations, B. subtilis Chungkookjang harboring the pLipB26 exhibited the highest lipase activity in PY medium, and B. subtilis Chungkookjang secreted two times more enzymes than B. subtilis DB 104 under the same condition. When B. subtilis Chungkookjang harboring the pLipB26 was cultured in a 5-1 jar-fermentor containing 21 of a PY medium, the maximum lipase activity (140 U/ml) and production yield (0.68 g/l) were obtained during the late exponential phase from a cell-free culture broth. Although B. subtilis Chungkookjang also secreted extracellular proteases at the late exponential phase, these results suggested the potential of B. subtilis Chungkookjang as a host for the secretory production of foreign proteins.