• Title/Summary/Keyword: Bacillus subtilis ATCC 6633

Search Result 46, Processing Time 0.019 seconds

Studies on Synthesis and Antimicrobial Activity of New ${\beta}-Lactam$ Antibiotics (새로운 베타락탐계 항생물질 합성과 항균활성)

  • Ko, Ok-Hyun;Hong, Sun-Soon;Ha, Jae-Chun;Kim, Young-Soo
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.322-331
    • /
    • 1994
  • For the development new cephalosporin antibiotics with aminothiazolmethoxyimino moiety in the C-7 position and triazolthiomethyl moiety in the C-3 position of cephem ring, $7{\beta}$-[(z)-2-(2-aminothiasol-4-yl)-2-(methoxyimino)acetamido]-3-[5-(aryl or het.)-4-phenyl-4H-1,2,4-triazol-3-yl]thiomethyl-3-cephem-4-carboxylic acids were synthesized. These compounds were tested for antimicrobial activitiy in vitro against ten species of microorganisms. It showed remarkable antibacterial activity against Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341 and Escherichia coli ESS. The antibacterial activity of most new compounds showed more active than cefazoline, but these compounds were lower active than cefotaxime against Pseudomonas aeruginosa IFO 13130.

  • PDF

Bioactivity of Metabolites from Actinomycetes Isolates from Red Sea, Egypt

  • Osman, Mohamed E.;El-nasr, Amany A. Abo;Hussein, Hagar M;Hamed, Moaz M
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.255-269
    • /
    • 2022
  • Actinomycetes isolated from marine habitats represent a promising source of bioactive substances. Here, we report on the isolation, identification, productivity enhancement and application of the bioactive compounds of Streptomyces qinglanensis H4. Eighteen marine actinomycetes were isolated and tested for resistance to seven bacterial diseases. Using 16S rRNA sequencing analysis (GenBank accession number MW563772), the most powerful isolate was identified as S. qinglanensis. Although the strain produced active compound(s) against a number of Gram-negative and Gram-positive bacteria, it failed to inhibit pathogenic fungi. The obtained inhibition zones were 22.0 ± 1.5, 20.0 ± 1, 16.0 ± 1, 12.0 ± 1, 22.0 ± 1 and 24.0 ± 1 mm against Bacillus subtilis ATCC 6633, Escherichia coli ATCC 19404, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231 and Staphylococcus aureus ATCC6538, respectively. To maximize bioactive compound synthesis, the Plackett-Burman design was used. The productivity increased up to 0.93-fold, when S. qinglanensis was grown in optimized medium composed of: (g/l) starch 30; KNO3 0.5; K2HPO4 0.25; MgSO4 0.25; FeSO4·7H2O, 0.01; sea water concentration (%) 100; pH 8.0, and an incubation period of 9 days. Moreover, the anticancer activity of S. qinglanensis was tested against two different cell lines: HepG2 and CACO. The inhibition activities were 42.96 and 57.14%, respectively. Our findings suggest that the marine S. qinglanensis strain, which grows well on tailored medium, might be a source of bioactive substances for healthcare companies.

Detection and Quantitation of Residual Antibiotics and Antibacterial Agents in Foods

  • Ryu, Jae-Chun;Seo, Ja-Won;Song, Yun-Seon;Park, Jong-Sei
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.3
    • /
    • pp.159-164
    • /
    • 1990
  • To detect and quantitation residual antibiotics and antibacterial agents in meats, we performed a biological assay employing the three microorganisms Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, and Bacillus cereus var. mycoides ATCC 11778 for the screening purpose and developed a Gas Chromatography-mass Spectrometry(GC/MS) analysis for the confirmation and quantiation. In the biological assay (paper disk method), three test solution are used depending on the character of the residual antibiotics and antibacterial agents, follow by a simple clean up procedure which includes homogenization with Mcilvaine buffer, defatting with includes homogenization with Mcilvaine buffer, defatting with hexane, extraction with chloroform, clean-up by Sep-Pak $C_{18}$ and Bakerbond SPE carboxylic acid column. The chloroform layer is used for the analysis of sulfa agents. macrolides antibiotics and antibacterial agents, Adsorbed materials in the Sep-Pak $C_{18}$ were also employed for th analysis of penicillins and tetracyclines. Effluents from the Sep-Pak $C_{18}$ were cleaned-up one more by Bakerbond 10 SPE COOH column and employed for the analysis of aminoglycosides. In the instrumental analysis by using the GC/MSD, residual antibiotics and antibacterial agent were quantitated by selected ion monitoring (SIM) mode after derivatization. A simultaneous analysis of six residual antibiotic and antibacterial agent such as oxytetracycline, penicillin, ampicillin, choliraphenicol and thiamphenicol was developed with simple cleanup procedures revealing good recovery and reproducibility. Also, simultaneous detection of macrolides antibiotics such as erythromycin, spiramycin, and oleandomycin was developed after acid hydrolysis due to their large molecular structures. Because of the high reproducibility and selectivity of these two methods, it is very desirable that the combination of the two methods be used in the bioassay for the screening of residual antibiotics and antibacterial agent and that GC/MSD analysis be used for the confirmation and quantitation.

  • PDF

Lytic Action of Egg White Lysozyme Isolated from Ogol Fowl on Staphylococcus aureus Phage Type 29 (Staphylococcus aureus Phage Type 29에 대한 오골계 난백 Lysozyme의 용균성)

  • Oh, Hong Rock;Lee, Jong Soo;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.2
    • /
    • pp.286-294
    • /
    • 1987
  • This experiment was carried out to investigate the bacteriolytic action of the egg white lysozyme isolated from Korean native Ogol fowl and to obtain the data for utilization of the enzyme as a food preservative. Staphyococcus aureus phage type 29 and Bacillus subtilis ATCC 6633 among the microorganisms tested were lyzed by the treatment with 0.05% lysozyme, but Staphylococcus aureus phage type 57 in addition to E. coli etc. was found to be a lysozyme- insensitive species. The lysis of S. aureus phage type 29 was maximized when incubated in nutrient broth (pH 7.0) at $37^{\circ}C$ for 24 hours and suspended it to absorbance 0.6 at 540nm in 0.05M sodium acetate but fer (pH 4.5) and then treated it with the 0.05% lysozyme for 30 min. at $30^{\circ}C$. It was found that the effect of 0.05% lysozyme in combination with 1% glycine on the growth inhibition of S. aurecus phage type 29 increased more 50% than that in the absence of glycine, but not effect with other any additeves and metal ions tested.

  • PDF

Influence of Surfactants on Enhancing Transport of Bacteria in Geological Materials (지질매질체내에서 계면활성제가 박테리아 이동 증진에 미치는 영향)

  • Choi, Nag-Choul;Park, Seong-Jik;Kim, Song-Bae;Kim, Dong-Ju;Lee, Seong-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1017-1023
    • /
    • 2010
  • This study investigated the effect of surfactants (nonionic surfactant (Tween 20), biosurfactant) on enhancing transport of bacteria (Bacillus subtilis ATCC 6633) in geological materials. Column experiments were performed under various surfactant conditions with columns packed with quartz sand (particle size distribution: 0.5~2.0 mm, mean diameter: 1.0 mm). Bacterial mass recovery, sticking efficiency, and other parameters were quantified from breakthrough curves. Results indicate that bacterial attachment to sand surfaces increased considerably in the presence of mineral salt medium (MSM), especially at the inlet, which was due to the increase of ionic strength by MSM. It was observed that bacterial transport in sand columns was enhanced in the presence of surfactant. Results also show that simultaneous injection of both surfactant and MSM or pre-injection of surfactant was more effective in bacterial transport enhancement than after-injection of surfactant. This study suggests that transport of bacteria in geological materials could be influenced by surfactants and their injection methods.

Establishing Test Method of Sporicidal activity of Commercial Sterilants (아포살균용 살균소독제 유효성 평가방법 확립)

  • Kim, Hyung-Il;Jeon, Dae-Hoon;Yoon, Hae-Jung;Kwak, In-Shin;Eom, Mi-Ok;Sung, Jun-Hyun;Park, Na-Young;Won, Sun-Ah;Bae, Seo-Young;Lee, Young-Ja;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.312-317
    • /
    • 2009
  • Usually, bacterial spores are hundreds or thousands of times more resistant to chemical sanitizers than are vegetable bacteria. Consequently, it is hard to assess whether a commercial sterilant, containing hydrogen peroxide and peracetic acid as ingredients, has or does not have sporicidal activity under certain conditions using the National Standard Test Method for assessing bactericidal activity against Escherichia coli and Staphylococcus aureus. Hence we established alternative the standard test method and requirements to determine whether they are effective in showing at least reduction of $10^3$ in the number of Bacillus subtilis ATCC 6633 spores under the required test condition for evaluation of sporicidal activity including verification methodology. This standardized method has proved to be suitable for evaluating effectiveness of commercial sterilants and could be used as Standardization Test Method for assessing sporicidal activity.

Studies on the Mucilage of the Root of Abelmoschus Manihot, Medic -[Part VI] The Influence of Microorganism for the Viscosity- (황촉규근(黃蜀葵根) 점액(粘液)에 관한 연구(硏究) -[제육보(第六報)] 황촉규근(黃蜀葵根) 점액(粘液)의 점도변화(粘度變化)에 미치는 미생물(微生物)의 영향(影響)-)

  • On, Doo-Heayn;Kim, Jeong-Myeon;Im, Zei-Bin
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.101-108
    • /
    • 1979
  • The viscosity of mucilage of Abelmoschus Manihot, Medic root decreased by the influence of various mechanical, physical and chemical conditions. It was experimented by viscosity decrease of mucilage connected with hydrogen ion concentration, bacterial multiplication, disinfection with 70% ethanol, some antibiotics, such as streptomycin, penicillin, ganamycin and chloramphenicol and mucilage derived from autoclaved Abelmoschus Manihot, Medic root. The results obtained were as follows: 1. It was clear that the viscosify of mucilage decreased notably under the influence of infected bacteria and bacterial multiplication. 2. By the inoculation of Bacillus subtilis ATCC 6633 and Escherichia coli ML 1410 to the mucilage the viscosify decrease fast but the viscosity of mucilage derived from autoclaved, Abelmoschus Manihot, Medic root. 3. The small quantity of reducing sugar in the mucilage was detected. 4. Hydrogan ion concentration in the mucilage remained $6.5{\sim}8.0$ in spite of the viscosity decrease.

  • PDF

Antibacterial Activities of Bamboo Sap Against Salmonella Typhimurium and Inhibitory Effects in a Model Food System (죽력의 Salmonella typhimurium 등에 대한 항세균 활성과 Model Food System에서의 생육억제 효과)

  • Chung, Hee-Jong;Ko, Bong-Guk
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.6
    • /
    • pp.709-714
    • /
    • 2005
  • Antibacterial activities of the freeze-dried bamboo sap dissolved into the water or 50% ethanol were determined and antimicrobial activity of bamboo sap dissolved into distilled water was most strong with 15 mm of the diameter of inhibiting clear zone against Listeria monocytogenes ATCC 19114 among gram positive bacteria tested, but it did not inhibit Bacillus subtilis ATCC 6633 at all, and the sap was most greatly inhibited the growth of Shigella dysenteriae ATCC 9361 among gram negative bacteria with 15 mm of the diameter of inhibiting clear zone. Bamboo sap dissolved into 50% ethanol most strongly inhibited the growth of L. monocytogenes ATCC 19114 and it also inhibited the growth of B. subtilis ATCC 6633 which did not show any with the sap dissolved into distilled water. The sap dissolved into 50% ethanol was most greatly inhibited the growth of S. dysenteriae ATCC 9361 among gram negative bacteria with 23 mm of the diameter of inhibiting clear zone, and it inhibited Vibrio parahaemolyticus WSDH 22, Vibrio vulnilicus ATCC 29307 and Escherichia coli O157 WSDH 54 with 16 mm of the diameter of inhibiting clear zone. However, Both of the saps dissolved in distilled water and 50% ethanol did not showed any inhibition against the lactic acid bacteria of Lactobacillus plantarum KCTC and Lactobacillus brevis KCTC. Most of the tested bacteria were more sensitive to the sap dissolved in 50% ethanol than the sap dissolved in distilled water. The lowest minimum inhibitory concentration of the bamboo sap dissolved into 50% ethanol was 0.6 mg eq./disc with L. monocytogenes ATCC 19114, but that of the sap dissolved into distilled water was 0.8 mg eq./disc with Staphylococcus epidermides ATCC 12228, S. dysenteriae ATCC 9361, L. monocytogenes ATCC 19114, Salmonella typhimurium WSU 2380 and V. parahaemolyticus WSDH 22. In a model food system of the sterilized chocolate milk, antibacterial activities of the sap dissolved into 50% ethanol were relatively stronger than those of the sap dissolved into distilled water and the activities against the bacteria tested were very similar each other. These result suggested the bamboo sap can be used as a natural food preservative.

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

Synthesis and Biopharmaceutical Studies of Cefazolin Phthalidyl Ester Prodrug (세파졸린프탈리딜 에스텔 프로드럭의 합성 및 생물약제학적 연구)

  • Lee, Jin-Hwan;Kim, Ga-Na
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.2
    • /
    • pp.61-69
    • /
    • 1993
  • Prodrug of cefazolin (CFZ) was prepared with the objective of improving its oral bioavailability. Cefazolin phthalidyl ester (CFZ-PT) was synthesized and evaluated as potential prodrug form. The successful synthesis of CFZ-PT was identified by spectroscopic analysis. Partition coefficient studies showed that CFZ-PT is more lipophilic than CFZ and the ester was hydrolyzed enzymatically into the parent drug in blood, liver and intestinal homogenates. The pharmacokinetic characteristics of CFZ-PT and CFZ were compared following oral administrations to rabbits. Serum CFZ concentration was determined by HPLC method and the ester compound (prodrug) was not detected in serum following oral administration of CFZ-PT. CFZ-PT did not have antimicrobial activity in vitro against Bacillus subtilis ATCC 6633, whereas CFZ-PT in serum after oral administration to rabbits had antimicrobial activity. From above observations, it was noted that CFZ-PT is rapidly hydrolyzed to CFZ in the body and the bioavailability of CFZ-PT was increased by 3.5-fold than that of CFZ. From these results of this study, it was concluded that CFZ-PT may be a novel prodrug of CFZ which can improve the oral absorption of CFZ.

  • PDF