• Title/Summary/Keyword: Bacillus strains

Search Result 1,037, Processing Time 0.026 seconds

Molecular Genetic Identification of Yeast Strains Isolated from Egyptian Soils for Solubilization of Inorganic Phosphates and Growth Promotion of Corn Plants

  • Hesham, Abd El-Latif;Mohamed, Hashem M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Forty yeast strains isolated from soils taken from different locations in Egypt were tested for their P-solubilizing activities on the basis of analyzing the clear zone around colonies growing on a tricalcium phosphate medium after incubation for 5 days at $25^{\circ}C$, denoted as the solubilization index (SI). Nine isolates that exhibited P-solubilization potential with an SI ranging from 1.19 to 2.76 were genetically characterized as five yeasts belonging to the genus Saccharomyces cerevisiae and four non-Saccharomyces, based on a PCR analysis of the ITS1-26S region amplied by SC1/SC2 species-specific primers. The highest P-solubilization efficiency was demonstrated by isolate PSY- 4, which was identified as Saccharomyces cerevisiae by a sequence analysis of the variable D1/D2 domain of the 26S rDNA. The effects of single and mixed inoculations with yeast PSY-4 and Bacillus polymyxa on the P-uptake and growth of corn were tested in a greenhouse experiment using different levels of a phosphorus chemical fertilizer (50, 100, and 200 kg/ha super phosphate 15.5% $P_2O_5$). The results showed that inoculating the corn with yeast PSY-4 or B. polymyxa caused significant increases in the shoot and root dry weights and P-uptake in the shoots and roots. The P-fertilization level also had a significant influence on the shoot and root dry weights and P-uptake in the shoots and roots when increasing the P-level from 50 up to 200 kg/ha. Dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 200 kg/ha gave higher values for the shoot and root dry weights and P-uptake in the shoots and roots, yet these increases were nonsignificant when compared with dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha. The best increases were obtained from dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha, which induced the following percentage increases in the shoot and root dry weights, and P-uptake in the shoots and roots; 16.22%, 46.92%, 10.09%, and 31.07%, respectively, when compared with the uninoculated control (fertilized with 100 kg/ha).

Korean Traditional Fermented Foods - A Potential Resource of Beneficial Microorganisms and Their Applications (한국전통발효식품 - 유익미생물의 잠재적인 자원과 응용)

  • Dharaneedharan, Subramanian;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.496-502
    • /
    • 2016
  • This review describes the diversity of Korean fermented foods and their significance as potential sources of probiotic bacteria. Fermented foods consumed in Korea are categorized according to their base material. Fermented foods such as kimchi, meju, doenjang, kangjang, jeotgal, and makgeolli are reported to have significant medicinal properties. These fermented products, which are consumed regularly by local people, are rich sources of beneficial microbes represented by several genera, including Weissella spp., Lactobacillus spp., Leuconostoc spp., Mucor, Penicillium, Scopulariopsis, Aspergillus, Rhodotorula, Candida, Saccharomyces, and Bacillus, as well as lactic acid bacteria. Fermented foods are now taken beyond the boundaries of their use as mere side dishes and are used significantly as a functional as well as medicinal foods. Fermented foods are a rich source of potential natural substances with antioxidant, anticancer, anticholesteric, antiobesitic, and antiaging properties, so that traditional fermented foods used as food supplements can impart health benefits. Publication of scientific studies on the dietary benefits of various fermented foods and growing consciousness about the potential health benefits of traditional fermented food are reflected in the scores of reports currently available in this field. Food microbiologists now have abundant opportunities to explore Korean traditional fermented foods for the isolation of new bacterial strains and to evaluate the potential applications of these strains through microbiological research.

An Epidemiologic Investigation on an Outbreak of Anthrax Occurred in Kyongju by Eating Dead Cow's Meat (경주시 배반동에서 발생한 탄저병에 관한 역학조사)

  • Lim, Hyun-Sul;Cheong, Hae-Kwan;Kim, Joung-Soon;Ohr, Hee-Choul;Rhie, Dong-Mo;Kim, Ho-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.4 s.48
    • /
    • pp.693-709
    • /
    • 1994
  • This epidemiologic study was carried out to investigate cauuse and magnitude of food-poisoning like epidemic occurred among inhabitants of a village who have eaten dead cow's meat near Kyongju in February of 1994, around lunar new year, The investigation consisted of interview survey on all inhabitants of 77 households (111 males and 119 females) and their visitors (40 males and 35 females), skin test with anthraxinum (Russian product), study on clinical characteristics for the patients hospitalized, and microbiologic examination on microbes isolated from cow's meat, patient and soils of dead cow's barn. The results obtained are as followings; 1. The proportion of the inhabitants who ingested the dead cow's meat was 36.4%. The incidence rate of the disease was 65.1% for males, 41.7% for females and the cases were distributed evenly for all age groups. The group ingested raw meat showed higher incidence than the group ingested cooked meat. There was no case among people who did not eat the meat. 2. The most clinical symptoms were significantly more frequent among cases than non-cases : sore throat (57%), nausea (51%), fever (47%), indigestion (43%), cough (41%), anorexia (41%), abdominal distention (41%), and abdominal pain (39%) were the major symptoms among cases. 3. Among 29 cases hospitalized out of total 61 cases, three patients, all old and feeble persons, deceased from the disease resulting in 4.9% fatality rate among total patient and 10.3% among hospitalized. Septicemia and meningitis were the causes of the deaths. 4. Three strains isolated from patients, and three strains from dead cow's meat and soil revealed typical microbiologic characteristics of Bacillus Anthracis, which also proved to be fatal to experimentally infected mice.

  • PDF

Desmutagenicity of the Enzymatic Browning Reaction Products Which Obtained from Prunus salicina (yellow) Enzyme and Polyphenol Compounds (재래종 황색자두효소 갈변반응 생성물의 돌연변이 억제작용)

  • Ham, Seung-Shi
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 1987
  • The mutagenicity and desmutagenicity on enzymatic browning reaction products which obtained from prunes salicina (yellow) enzyme and polyphenol compounds were carried out. In the rec-assay on Bacillus subtilis strains H17 and M45, the enzymatic browning reaction products of pyrogallol, hydroxyhydroquinone, 3,4-dihydroxytoluene and catechol of $10^{-2}M$ did not showed mutagenicity. In the effects of various metal ions on the rec-assay, the enzymatic browning reaction products of pyrogallol showed mutagenic activity by $Fe^{3+},\;Mn^{2+},\;Zn^{2+},\;Ni^{2+}$ and $Al^{3+}$. In the enzymatic browning reaction products of hydroxyhydroquinone, $Cu^{2+},\;Mn^{2+}$ and $Pb^{2+}$ were effected in mutagenic action and the enzymatic browning reaction products of catechol was effected in mutagenic action by $Mn^{2+}$. In the DNA-breaking action of enzymatic browning reaction products of pyrogallol, hydroxyhydroquinone, 3,4-dihyroxytoluene and catechol did not show, DNA-breaking action. In the effects of various metal ions on the DNA-breaking action of enzymatic browning reaction products, $Cu^{2+}$ showed DNA-breaking action. In the mutagenicity test on Sal. typhimurium strains TA98 and TA 100 with S-9 mix, 4 kinds of browned substances did sot shove muragenicity, all the browned substances showed strong desmutagenic activity in the presence of benzo $({\alpha})-pyrene$ with S-9 mix.

  • PDF

Research Trends on Plant Associated Beneficial Bacteria as Biofertilizers for Sustainable Agriculture: An Overview (지속농업을 위한 생물비료로서의 유용세균관련 식물검정 연구 개관)

  • Sa, Tongmin;Chauhan, Puneet Singh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.20-28
    • /
    • 2009
  • The sustainability of conventional agriculture which is characterized by input dependent and ecologically simplified food production system is vague. Chemicals and present practices used in agriculture are not only costly but also have widespread implications on human and animal health, food quality and safety and environmental quality. Thus there is a need for alternative farming practices to sustain food production for the escalating population and conserve environment for future generations. The present research scenario in the area of plant microbe interactions for maintaining sustainable agriculture suggests that the level of internal regulation in agro-ecosystems is largely dependent on the level of plant and microbial diversity present in the soil. In agro-ecosystems, biodiversity performs a variety of ecological services beyond the production of food, including recycling of nutrients, regulation of microclimate and local hydrological processes, suppression of undesirable organisms and detoxification of noxious chemicals. Controlling the soil microflora to enhance the predominance of beneficial and effective microorganisms can help improve and maintain soil chemical and physical properties. The role of beneficial soil microorganisms in sustainable productivity has been well construed. Some plant bacteria referred to as plant growth-promoting rhizobacteria (PGPR) can contribute to improve plant growth, nutrient uptake and microbial diversity when inoculated to plants. Term PGPR was initially used to describe strains of naturally occurring non-symbiotic soil bacteria have the ability to colonize plant roots and stimulate plant growth PGPR activity has been reported in strains belonging to several other genera, such as Azotobacter, Azospirillum, Arthrobacter Bacillus, Burkhokderia, Methylobacterium, and Pseudomonas etc. PGPR stimulate plant growth directly either by synthesizing hormones such as indole acetic acid or by promoting nutrition, for example, by phosphate solubilization or more generally by accelerating mineralization processes. They can also stimulate growth indirectly, acting as biocontrol agents by protecting the plant against soil borne fungal pathogens or deleterious bacteria. Present review focuses on some recent developments to evolve strategies for better biotechnological exploitation of PGPR's.

Isolation and identification of protease-producing bacteria from the intertidal zone in Jeju Island, Korea (제주 조간대로부터 단백질 가수분해효소를 생산하는 세균의 분리 및 동정)

  • Moon, Young-Gun;Dharaneedharan, Subramanian;Kim, Dong-Hwi;Park, So-Hyun;Heo, Moon Soo
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.382-388
    • /
    • 2015
  • Eleven protease-producing bacteria were isolated from the organisms' external shells and the inorganic materials collected from intertidal zone of Jeju Island, Republic of Korea. The samples were diluted serially, inoculated on Zobell agar plates with 1% skim milk and incubated at $20^{\circ}C$. Clear zone forming colonies were selected as protease-producing bacteria and each strain was identified based on the phylogenetic analysis with their 16S rDNA sequences. Strains JJM125, JJM129, YG47 and YG49 belong to the marine bacterial genus Pseudoalteromonas; strain JJM122 belong to the genus Microbulbifer; strains YG51, YG52, YG62 and YG63 belong to the genus Vibrio; and strain YG65 belong to genus Bacillus. Hence, the present study suggests that these protease producing bacteria could be further used to develop new varieties of protease with various biotechnological applications.

Bactericidal Effect of Electrolyzed Activated Water Prepared at Different Water Temperatures on Gram-Positive and Gram-Negative Bacteria (전해수 생성온도에 따른 그람양성균과 그람음성균의 살균 효과)

  • Lee, Jeong Min;Chung, Hyun-Jung;Bang, Woo Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1227-1232
    • /
    • 2016
  • Electrolyzed activated water (EAW) has been reported to exhibit strong bactericidal effects on foodborne microorganisms. However, the disinfection efficacy of EAW is affected by factors such as water source and hardness. This study investigated bactericidal effects of EAW against three gram-positive (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) and three gram-negative (Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis) foodborne pathogens. Six strains were treated with EAW prepared at different water temperatures (4, 22, and $40^{\circ}C$) for 15 min, and D-values were generated. The results show that the lowest D-values for Lis. monocytogenes by EAW produced at $4^{\circ}C$ and $40^{\circ}C$ were 6.60 and 1.57 min, respectively. The lowest D-value for Sal. Enteritidis by EAW produced at $22^{\circ}C$ was 2.92 min. D-values of all strains treated by EAW produced at $40^{\circ}C$ decreased significantly compared to those treated by EAW produced at $4^{\circ}C$ (P<0.05). These results demonstrate that applying EAW produced at warm temperature is more effective for reducing foodborne pathogens for food safety.

Isolation and Characterization of Oligotrophic Strains with High Enzyme Activity from Buckwheat Sokseongjang (메밀 속성장 유래 효소활성 우수 저영양성 균주 분리 및 특성)

  • Lee, Sung-Young;Kim, Ji-Yeun;Baek, Sung-Yeol;Yeo, Soo-Hwan;Koo, Bon-Sung;Park, Hye-Young;Choi, Hye-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.735-741
    • /
    • 2011
  • Bealmijang is a short-term fermented regional product that is prepared with soybean and extra ingredients. In this study, starter strain candidates were screened from Bealmijang for fermented soybean paste products. Twenty one bacterial strains producing extracellular enzymes (amylase, cellulase, protease, xylanase and lipase) were isolated from Bealmijang, buckwheat sokseongjang. The isolates were assessed for fibrinolytic and antibacterial activities, and salt tolerance. Strain HJ18-4, identified as Bacillus subtilis (AB601598) by biochemical properties (89.6%) and 16S rDNA sequencing (100%), showed the highest enzymatic, fibrinolytic, and antibacterial activities among the isolates. Although the growth of HJ18-4 was inhibited by the increase of NaCl concentration, the growth still exceeded that of B. subtilis KACC 10114 at 5% and 10% NaCl. These results suggest that B. subtilis HJ18-4 is suitable as a starter for soybean paste manufacture.

Isolation of Growth Inhibition Substance on Food borne Microorganisms from Hypericum ascyron L. and Application to Food Preservation (물레나물(Hypericum ascyron L.)의 식중독 미생물 증식 억제 물질의 분리 및 식품적용)

  • Han, Ji-Sook;Lee, Ji-Young;Baek, Nam-In;Back, Il-Woung;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.274-282
    • /
    • 2002
  • The ethanol extract and n-hexane fraction from Hypericum ascyron L. showed strong growth inhibition at 25 ppm on 5 strains of Listeria monocytogenes for 72 hr at $32^{\circ}C$. The purified substance, H2-5-2 fraction, was isolated by silica gel column and preparative thin layer chromatography from n-hexane fraction of Hypericum ascyron L. The H2-5-2 fraction showed a strong bacteriostatic activity on 5 strains of L. monocytogenes at 10 ppm in tryptic soy broth, and the viable cell was reduced 1 log cycle compared to initial cell number. The n-hexane fraction of Hypericum ascyron L. showed strong growth inhibition at 25 ppm on Bacillus cereus and Staphylococcus aureus, and at 50 ppm on Vibrio parahaemolyticus for 72 hr. The purified antimicrobial substance, the H2-5-2 fraction, was assumed as high unsaturated sterol by $^1H-NMR$ and $^{13}C-NMR$. On application test using minced Alaska pollack and ground beef, the n-hexane fraction of Hypericum ascyron L. at the level of 250 ppm was applied at $32^{\circ}C$ and $5^{\circ}C$. At $32^{\circ}C$ storage condition, the antimicrobial substances did not reduced L. monocytogenes ATCC 19113, meanwhile at $5^{\circ}C$ storage condition, L. monocytogenes ATCC 19113 was reduced in viable number.

Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens

  • Park, Jong Myong;You, Young-Hyun;Park, Jong-Han;Kim, Hyeong-Hwan;Ghim, Sa-Youl;Back, Chang-Gi
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.160-171
    • /
    • 2017
  • Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.