• 제목/요약/키워드: Bacillus strain

Search Result 1,152, Processing Time 0.024 seconds

Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables (전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증)

  • Enkhjargal, Lkhagvasarnai;Min, Kyung Jin;Yoon, Ki Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1690-1700
    • /
    • 2013
  • The objective of this study is to develop and validate predictive growth models for Bacillus cereus (diarrhea type) vegetative cells, spores and Staphylococcus aureus in preprocessed Namul (bracken and Chwinamul) and root vegetables (bellflower and burdock). For validation of model performance, growth data for S. aureus in preprocessed vegetables were collected at independent temperatures (18 and $30^{\circ}C$) not used in the model development. In addition, model performance of B. cereus (diarrhea type) in preprocessed vegetables was validated with an emetic type of B. cereus strain. In primary models, the specific growth rate (SGR) of the B. cereus spores was faster than that of the B. cereus vegetative cells, regardless of the kinds of vegetables at 24 and $35^{\circ}C$, while lag time (LT) of the B. cereus spores was longer than that of the B. cereus vegetative cells, except for burdock. The growth of B. cereus and S. aureus was not observed in bracken at temperatures lower than 13 and $8^{\circ}C$, respectively. The LT models for B. cereus (diarrhea type) in this study were suitable in predicting the growth of B. cereus (emetic type) on burdock and Chwinamul. On the other hand, SGR models for B. cereus (diarrhea type) were suitable for predicting the growth of B. cereus (emetic type) on all preprocessed vegetables. The developed models can be used to predict the risk of B. cereus and S. aureus in preprocessed Namul and root vegetables at the retail markets.

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption (환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구)

  • Kim, Gi Yong;Jang, Sung-Chan;Song, Young Ho;Lee, Chang-Soo;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2016
  • One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.