• Title/Summary/Keyword: Bacillus sp. B1

Search Result 216, Processing Time 0.036 seconds

Biogenic Amines Formation and Content in Fermented Soybean Paste (Cheonggukjang) (청국장 중 biogenic amine의 함량 및 생성원인)

  • Han, Gyu-Hong;Cho, Tae-Yong;Yoo, Myung-Sang;Kim, Chun-Soo;Kim, Jung-Min;Kim, Hyun-Ah;Kim, Mi-Ok;Kim, Seong-Cheol;Lee, Sun-Ae;Ko, Yong-Suk;Kim, So-Hee;Kim, Dae-Byoung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.541-545
    • /
    • 2007
  • The potential to produce biogenic amines was investigated in microbial strains isolated from fermented soybean paste, cheonggukjang. The typical levels of 11 biogenic amines, including putrescine, histamine, and tryptamine, were analyzed in commercial cheonggukjang. The tyramine and histamine levels in the samples ranged from 4.2 to 483.1 mg $kg^{-1}$ and 0.2 to $70.3mg\;kg^{-l}$, respectively. A total of 4 microbial strains of Bacillus sp. were isolated from cheonggukjang. The Bacillus sp. were identified as B. amyloliquefaciens, B. subtilis, and B. licheniformis based on phenotypic characteristics, which included using the VITEK system. The screening plate method for detecting amino acid decarboxylase positive microorganisms was performed. The results fer amino decarboxylation were positive, and biogenic amine formation was evaluated by the confirmation of amine-forming capacity.

Production of alkaline protease by the moderate halophile, Halomonas sp. ES 10 (Halomonas sp. ES 10에 의한 alkaline protease의 생산)

  • Kim, Chan-Jo;Kim, Kyo-Chang;Oh, Man-Jin;Choi, Seong-Hyun
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.307-311
    • /
    • 1991
  • A moderate halophile, ES 10 which produces a high level of alkaline protease was isolated from the salted anchovies and indentified as a strain of Halomonas sp. The optimum growth of the Halomonas sp. was revealed in the presence of 2 M NaCl and its growth rate in the Temporary Synthetic Medium was increased by adding DL-alanine, but inhibited by adding L-proline. The concentration of $Na^+$, $K^+$ and $Mg^{2+}$ in the cell mass of the Halomonas sp. ES 10 was 5-, 25- and 35-fold higher by dry weight basis, respectively than those of B. subtilis or E. coli. Norberg and Hofsten medium with 1 M NaCl was selected as the best medium for producing high level of alkaline protease. The optimum temperature for the growth and protease production was equally $20^{\circ}C$.

  • PDF

Optimal Production of Xylooligosaccharide by Using Recombinant Endoxylanase from Bacillus subtilis (Bacillus subtilis 유래 재조합 endoxylanase를 이용한 xylooligosaccharide의 최적 생산)

  • Kim, Yeon-Hee;Heo, Sun-Yeon;Kim, Mi-Jin;Lee, Jae-Hyung;Kim, Young-Man;Nam, Soo-Wan
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • Xylan is a major hemicellulose component of the cell walls of monocots and hardwood, representing up to 30% of the dry weight of these plants. To efficiently hydrolyze xylan, the endoxylanase gene from Bacillus sp. was expressed in B. subtilis DB431 by introducing the plasmid pJHKJ4. The total activity of the recombinant endoxylanase reached about 857 unit/ml by batch fermentation of B. subtilis DB431/pJHKJ4 in LB maltose medium. The majority (>92%) of endoxylanase was efficiently secreted into the culture medium. The recombinant endoxylanase hydrolyzed more the birchwood xylan efficiently than the other xylans. When 4 % concentration of xylan was used, the highest production of xylooligosaccharide was observed, and xylobiose and xylotriose were the major products. Optimal amount of enzyme and reaction time for producing xylooligosaccharide were found to be 10 unit and 1 hr, respectively. In addition, the temperature of $40^{\circ}C{\sim}50^{\circ}C$ gave the highest production of xylooligosaccharide. Consequently, the optimized conditions for the production of xylooligosaccharide through the hydrolysis of xylan were determined as follows: 10 unit endoxylanase, $50^{\circ}C$, 4% birchwood xylan, 1 hr reaction.

Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice

  • Khammool Khamsuk;Bernard Dell;Wasu Pathom-aree;Wanwarang Pathaichindachote;Nungruthai Suphrom;Nareeluk Nakaew;Juangjun Jumpathong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1029-1039
    • /
    • 2024
  • This study explores beneficial bacteria isolated from the roots and rhizosphere soil of Khao Rai Leum Pua Phetchabun rice plants. A total of 315 bacterial isolates (KK001 to KK315) were obtained. Plant growth-promoting traits (phosphate solubilization and indole-3-acetic acid (IAA) production), and antimicrobial activity against three rice pathogens (Curvularia lunata NUF001, Bipolaris oryzae 2464, and Xanthomonas oryzae pv. oryzae) were assessed. KK074 was the most prolific in IAA production, generating 362.6 ± 28.0 ㎍/ml, and KK007 excelled in tricalcium phosphate solubilization, achieving 714.2 ± 12.1 ㎍/ml. In antimicrobial assays using the dual culture method, KK024 and KK281 exhibited strong inhibitory activity against C. lunata, and KK269 was particularly effective against B. oryzae. In the evaluation of antimicrobial metabolite production, KK281 and KK288 exhibited strong antifungal activities in cell-free supernatants. Given the superior performance of KK281, taxonomically identified as Bacillus sp. KK281, it was investigated further. Lipopeptide extracts from KK281 had significant antimicrobial activity against C. lunata and a minimum inhibitory concentration (MIC) of 3.1 mg/ml against X. oryzae pv. oryzae. LC-ESI-MS/MS analysis revealed the presence of surfactin in the lipopeptide extract. The crude extract was non-cytotoxic to the L-929 cell line at tested concentrations. In conclusion, the in vitro plant growth-promoting and disease-controlling attributes of Bacillus sp. KK281 make it a strong candidate for field evaluation to boost plant growth and manage disease in upland rice.

Production of Xylooligosaccharides by Yeast Cell Surface-Displayed Endoxylanase (효모 세포 표면 발현된 Endoxylanase를 이용한 Xylooligosaccharides의 생산)

  • Kim, Hyun-Jin;Lee, Jae-Hyung;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • The yeast surface expression system, pCTXYN (6.8 kb), of Bacillus endoxylanase gene (xynB, 642 bp) was constructed and introduced into Saccharomyces cerevisiae EBY100 cell. The transformed yeast cell showing the highest endoxylanase activity was selected through the active staining of colonies grown on YPDG medium containing xylan. With the yeast transformant, EBY100/pCTXYN, grown on galactose containing medium, it was found that the endoxylanase was successfully displayed on the yeast cell surface and the xylooligosaccharides were efficiently produced from xylan. The most of endoxylanase activity was detected in the cell fraction and reached about 1.9 unit/mL after 48 h cultivation. The optimized conditions for xylooligosaccharides production from xylan were determined as follows: substrate and its concentration, oat spelt xylan 6%; concentration of yeast whole-cell, 5 unit/mL; temperature, $50^{\circ}C$, and reaction time $2{\sim}4\;h$. When the oat spelts xylan and corncob xylan were hydrolyzed by treatment with cell surface-displayed endoxylanase, xylotriose was formed as a main product.

The Effect of Container Types on the Growth of Bacteria during Kimchi Fermentation (김치 발효 시 용기의 종류가 세균 생장에 미치는 영향)

  • Han, Kook-Il;Kim, Mi-Jung;Kwon, Hyun-Jung;Kim, Yong Hyun;Kim, Wan-Jong;Han, Man-Deuk
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.2
    • /
    • pp.249-257
    • /
    • 2013
  • This study is being performed to confirm the container effects during the fermentation processes of kimchi. Kimchi fermentation was prepared in the laboratory with four different types of containers; namely, a traditional Onggi vessel (Korean traditional clay pot, TOV), plastic airtight covered Onggi vessel (PAOV), plastic covered vessel (PCV) and plastic airtight covered vessel (PACV). The kimchi fermentation in the different containers was followed by taking samples at 48 hour intervals for 10 days. In all fermentation containers, the pH changes of kimchi were decreased with fermentation days, while salt content was the same for all types of containers. The number of lactic acid bacteria in kimchi were $1.09{\times}10^8$ $CFU/m{\ell}$ at first. But the TOV, PAOV, PCV, and PACV after fermentation for 10 days were $1.42{\times}10^{10}$, $9.13{\times}10^9$, $4.93{\times}10^9$ and $7.46{\times}10^9$ $CFU/m{\ell}$, respectively. The kimchi fermented in the TOV with the most dominant bacterial species were the following 5 strains: Bacillus subtilis, B. licheniformis, B. safensis, Lactobacillus brevis and B. pumilus. The use of different types of containers therefore influenced the number of L. brevis and the four Bacillus species. in kimchi, and may influence the characteristics of the fermented kimchi products. The TOV offered the greatest L. brevis numbers and suggested that it could be the best suited for preparing traditional kimchi fermentation.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Evaluation of Rheological and Functional Properties of Roasted Soybean Flour and Mixed Cereals Fermented by Bacillus sp. (고초균을 이용한 볶은 콩과 곡류 혼합 발효물의 물성 및 기능성 평가)

  • Son, Se-Jin;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.3
    • /
    • pp.450-457
    • /
    • 2011
  • Roasted soybean flour (RSF) and mixed cereals were fermented by the solid state fermentation using Bacillus subtilis HA to optimize the production of biologically active compounds. The RFS fermented with 52.7% moisture content showed higher production with protease activity of 42.6 unit/g and 10% mucilage content after fermentation for 24 hr. Tyrosine content and protease activity after 48 hr fermentation time were the highest values with 445.5 mg% and 55.1 unit/g, respectively. However, the wholesome fermented RSF (FRSF) was obtained by fermentation for 24 hr because of the production of unpleasant flavors after fermentation for 48 hr. The RSF fermented with various types and contents of cereals has no effects on tyrosine content and protease activity. However, the addition of brown rice significantly increased mucilage content, especially indicating 24.55% at the addition of 80% (w/w). For addition of barley, fibrinolytic activity was increased to 11.82 unit/g by the fortification of 60% barley. It is concluded that biologically active compounds including fibrinolytic activity and mucilage content in FRSF were dependent upon the type and content of various cereals.

The Effects of Environment-Friendly Diets on the Growth Performance, Nutrient Digestibility, Fecal Excretion, Nitrogen Excretion and Emission Gases in Manure for Growing Pigs (환경친화적인 사료의 급여가 육성돈의 성장 능력, 영양소 소화율, 분 배설량, 분뇨내 질소배설량 및 악취 가스에 미치는 영향)

  • Yoo, J.S.;Cho, J.H.;Chen, Y.G.;Kim, H.J.;Wang, Q.;Hyun, Y.;Ko, T.G.;Park, C.S.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.491-500
    • /
    • 2007
  • Two experiments were used to determine the effects of environment-friendly diets on growth performance, fecal excretion, nitrogen excretion and emission gases in manure for growing pigs. In experiment 1, ninety six crossed pigs(Landrace×Yorkshire×Duroc) were allocated into four treatments. Treatments were AME(adequate ME diet, 3,265 kcal/kg), LME(lower ME diet, 3,100 kcal/kg), LME 0.05(lower ME diet+α- galactosidase & β-mannanase 0.05%) and LME 0.10(lower ME diet+α-galactosidase & β-mannanase 0.10%). Pigs fed AME diet had lower ADFI(Average Daily Feed Intake) than pigs fed other diets(p<0.05). DM(Dry Matter) digestibility in pigs fed AME and LME 0.10 diets had greater than pigs fed LME diet(p<0.05). Energy digestibility is higher in pigs fed AME and LME 0.10 diets than other treatments(p<0.05). In experiment 2, twenty four crossbred pigs(33.71 kg average BW) were used in a 14-d metabolism experiment. The pigs were housed in individual cages equipped with plastic bed flooring. Treatments were CP(Crude protein) 18% without Bacillus sp., CP 18% diet+Bacillus sp. 0.05%, CP 14% without Bacillus sp. and CP 14% diet+Bacillus sp. 0.05%. Nitrogen intake was higher for CP 18% diets than CP 14% diets(p<0.05). DM, N(Nitrogen) and energy digestibility were affected by probiotics(p<0.05). With the high CP in diets, Energy and N digestibility, urine N percent, urine N excretion and total N excretion were increased significantly compared to low CP in diets(p<0.05). Among the treatments, DM and N digestibilities, feces N excretion, N absorption were decreased significantly(p<0.05), however, feces excretion, feces N, urine N percent, urine N excretion and total N excretion were increased significantly(p<0.05) when pigs fed without probiotics diets compare to pigs fed with probiotics diets. DM and N digestibility, feces excretion, feces N excretion, urine N percent, urine N excretion, total N excretion, N absorption and N adsorption ratio were CP×probiotic interactions in p<0.05. Ammonia(p<0.01) and H2S(p<0.05) in manure were lower in CP 14% diets than CP 18% diets. Also, ammonia and H2S in manure were CP×probiotic interactions in p<0.05. In conclusion, low energy and reduction of CP dietary added enzyme and probiotics improved nutrient digestibility and reduced odors emission in manure for growing pigs.

Selection and Antifungal Activity of Antagonistic Bacterium Bacillus subtilis KMU-13 against Cucumber scab, Cladosporium cucumerinum KACC 40576 (검은별무늬병균 Cladosporium cucumerinum KACC 40576에 대한 길항균주 Bacillus subtilis KMU-13의 선발 및 항진균 활성)

  • Park Sung-Min;Lee Jun-Seuk;Park Chi-Duck;Lee Jung-Hun;Jung Hyuck-Jun;Yu Tae-Shick
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.42-48
    • /
    • 2006
  • Bacillus subtilis KMU-13 was isolated from the Lillehammer forest soils at Norway and shown a strong antifungal activity on cucumber scab, Cladosporium cucumerinum KACC 40576. B. subtilis KMU-13 produced a maximum level of antifungal substance under incubation aerobically at $30^{\circ}C$, 180 rpm for 48 hours in LB broth containing 0.5% maltose and 0.5% bactopeptone and initial pH adjusted to 6.0. Butanol extract of cultured broth was confirmed inhibitory zone by plate assay and Rf 0.64 value substance by thin layer chromatography (TLC) represented high antifungal activity against C. cucumerinum KACC 40576 and also shown fungal growth inhibitory activity against Botytis cinerea KACC 40573, C. gloeosporioides KACC 40804, D. byoniae KACC 40669, F. oxysporum KACC 40037, F. oxysporum KACC 40052, F. oxysporum f. sp. radicis-lycopersici KACC 40537, F. oxysporum KACC 40902, M. cannonballus KACC 40940, P. cambivora KACC 40160, R. soiani AG-1 KACC 40101, R. solani AG-4 KACC 40142, and S. scleotiorum KACC by agar diffusion method.